Super Yang-Mills Matrix Integrals For An Arbitrary Gauge Group

Author(s):  
Vasily Pestun
2015 ◽  
Vol 30 (24) ◽  
pp. 1550145 ◽  
Author(s):  
Gwendolyn Lacroix ◽  
Claude Semay ◽  
Fabien Buisseret

In this paper, the thermodynamic properties of [Formula: see text] supersymmetric Yang–Mills theory with an arbitrary gauge group are investigated. In the confined range, we show that identifying the bound state spectrum with a Hagedorn one coming from noncritical closed superstring theory leads to a prediction for the value of the deconfining temperature [Formula: see text] that agrees with recent lattice data. The deconfined phase is studied by resorting to a [Formula: see text]-matrix formulation of statistical mechanics in which the medium under study is seen as a gas of quasigluons and quasigluinos interacting nonperturbatively. Emphasis is put on the temperature range (1–5) [Formula: see text], where the interactions are expected to be strong enough to generate bound states. Binary bound states of gluons and gluinos are indeed found to be bound up to 1.4 [Formula: see text] for any gauge group. The equation of state is then computed numerically for [Formula: see text] and [Formula: see text], and discussed in the case of an arbitrary gauge group. It is found to be nearly independent of the gauge group and very close to that of nonsupersymmetric Yang–Mills when normalized to the Stefan–Boltzmann pressure and expressed as a function of [Formula: see text].


1994 ◽  
Vol 03 (04) ◽  
pp. 695-722 ◽  
Author(s):  
SUBENOY CHAKRABORTY ◽  
PETER PELDÁN

We introduce a gauge and diffeomorphism invariant theory on the Yang-Mills phase space. The theory is well defined for an arbitrary gauge group with an invariant bilinear form, it contains only first class constraints, and the spacetime metric has a simple form in terms of the phase space variables. With gauge group SO (3, C), the theory equals the Ashtekar formulation of gravity with a cosmological constant. For Lorentzian signature, the theory is complex, and we have not found any good reality conditions. In the Euclidean signature case, everything is real. In a weak field expansion around de Sitter spacetime, the theory is shown to give the conventional Yang-Mills theory to the lowest order in the fields. We show that the coupling to a Higgs scalar is straightforward, while the naive spinor coupling does not work. We have not found any way of including spinors that gives a closed constraint algebra. For gauge group U(2), we find a static and spherically symmetric solution.


2010 ◽  
Vol 25 (31) ◽  
pp. 5765-5785 ◽  
Author(s):  
GEORGE SAVVIDY

In the recently proposed generalization of the Yang–Mills theory, the group of gauge transformation gets essentially enlarged. This enlargement involves a mixture of the internal and space–time symmetries. The resulting group is an extension of the Poincaré group with infinitely many generators which carry internal and space–time indices. The matrix representations of the extended Poincaré generators are expressible in terms of Pauli–Lubanski vector in one case and in terms of its invariant derivative in another. In the later case the generators of the gauge group are transversal to the momentum and are projecting the non-Abelian tensor gauge fields into the transversal plane, keeping only their positively definite spacelike components.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Masashi Hamanaka ◽  
Shan-Chi Huang

Abstract We study exact soliton solutions of anti-self-dual Yang-Mills equations for G = GL(2) in four-dimensional spaces with the Euclidean, Minkowski and Ultrahyperbolic signatures and construct special kinds of one-soliton solutions whose action density TrFμνFμν can be real-valued. These solitons are shown to be new type of domain walls in four dimension by explicit calculation of the real-valued action density. Our results are successful applications of the Darboux transformation developed by Nimmo, Gilson and Ohta. More surprisingly, integration of these action densities over the four-dimensional spaces are suggested to be not infinity but zero. Furthermore, whether gauge group G = U(2) can be realized on our solition solutions or not is also discussed on each real space.


2019 ◽  
Vol 16 (07) ◽  
pp. 1950099
Author(s):  
Richard Pincak ◽  
Kabin Kanjamapornkul

We extend generalized autoregressive conditional heteroscedastic (GARCH) errors in the Euclidean plane of the scalar field to the tensor field and to the spinor field [Formula: see text], the so-called spinor garch, S-GARCH. We use the model of S-GARCH to explain the stylized fact in financial time series, the so-called volatility cluster, by using hyperbolic coordinate with induced complex lag of delay time scale in mirror symmetry concept. As the result of this theory, we obtain an equivalent form of Yang–Mills equation for financial time series as the interaction between the behavior of traders, the so-called, fundamentalist, chatlist and noise trader, by using volatility in spinor field with invariant of the gauge group [Formula: see text], the so-called modeling of the financial market in icosahedral supersymmetry gauge group.


1995 ◽  
Vol 358 (1-2) ◽  
pp. 73-80 ◽  
Author(s):  
A Brandhuber ◽  
K Landsteiner
Keyword(s):  

1992 ◽  
Vol 46 (6) ◽  
pp. R2279-R2282 ◽  
Author(s):  
Peter Peldán

Sign in / Sign up

Export Citation Format

Share Document