Qualitative Information and Entropy Structures

1970 ◽  
pp. 148-194 ◽  
Author(s):  
Zoltan Domotor
1987 ◽  
Vol 18 (3) ◽  
pp. 206-216 ◽  
Author(s):  
Melanie Fried-Oken

A new procedure entitled the Double Administration Naming Technique is proposed to assist the clinician in obtaining qualitative information about a client's visual confrontation naming skills. It involves the administration of the standard naming test followed by a readministration of the instrument. A series of naming cues then are presented. By examining the number and types of naming errors produced during the two test presentations, the clinician distinguishes word-finding problems from expressive vocabulary limitations and qualitatively describes the language disorder. The cues that facilitate correct naming are used to plan effective treatment goals.


Author(s):  
Michael Liebmann ◽  
Michael Hagenau ◽  
Matthias Häußler ◽  
Dirk Neumann

2018 ◽  
Vol 40 ◽  
pp. 04017
Author(s):  
Adrien Vergne ◽  
Céline Berni ◽  
Jérôme Le Coz

There has been a growing interest in the last decade in extracting information on Suspended Sediment Concentration (SSC) from acoustic backscatter in rivers. Quantitative techniques are not yet effective, but acoustic backscatter already provides qualitative information on suspended sediments. In particular, in the common case of a bi-modal sediment size distribution, corrected acoustic backscatter can be used to look for sand particles in suspension and provide spatial information on their distribution throughout a river crosssection. This paper presents a case-study where these techniques have been applied.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3358
Author(s):  
Donato Calabria ◽  
Maria Maddalena Calabretta ◽  
Martina Zangheri ◽  
Elisa Marchegiani ◽  
Ilaria Trozzi ◽  
...  

Paper-based lateral-flow immunoassays (LFIAs) have achieved considerable commercial success and their impact in diagnostics is continuously growing. LFIA results are often obtained by visualizing by the naked eye color changes in given areas, providing a qualitative information about the presence/absence of the target analyte in the sample. However, this platform has the potential to provide ultrasensitive quantitative analysis for several applications. Indeed, LFIA is based on well-established immunological techniques, which have known in the last year great advances due to the combination of highly sensitive tracers, innovative signal amplification strategies and last-generation instrumental detectors. All these available progresses can be applied also to the LFIA platform by adapting them to a portable and miniaturized format. This possibility opens countless strategies for definitively turning the LFIA technique into an ultrasensitive quantitative method. Among the different proposals for achieving this goal, the use of enzyme-based immunoassay is very well known and widespread for routine analysis and it can represent a valid approach for improving LFIA performances. Several examples have been recently reported in literature exploiting enzymes properties and features for obtaining significative advances in this field. In this review, we aim to provide a critical overview of the recent progresses in highly sensitive LFIA detection technologies, involving the exploitation of enzyme-based amplification strategies. The features and applications of the technologies, along with future developments and challenges, are also discussed.


2019 ◽  
Vol 22 (06) ◽  
pp. 1950045 ◽  
Author(s):  
Rémi Carles ◽  
Clément Gallo

We justify the WKB analysis for generalized nonlinear Schrödinger equations (NLS), including the hyperbolic NLS and the Davey–Stewartson II system. Since the leading order system in this analysis is not hyperbolic, we work with analytic regularity, with a radius of analyticity decaying with time, in order to obtain better energy estimates. This provides qualitative information regarding equations for which global well-posedness in Sobolev spaces is widely open.


2014 ◽  
Vol 24 (06) ◽  
pp. 1450077 ◽  
Author(s):  
Matthew A. Morena ◽  
Kevin M. Short

We report on the tendency of chaotic systems to be controlled onto their unstable periodic orbits in such a way that these orbits are stabilized. The resulting orbits are known as cupolets and collectively provide a rich source of qualitative information on the associated chaotic dynamical system. We show that pairs of interacting cupolets may be induced into a state of mutually sustained stabilization that requires no external intervention in order to be maintained and is thus considered bound or entangled. A number of properties of this sort of entanglement are discussed. For instance, should the interaction be disturbed, then the chaotic entanglement would be broken. Based on certain properties of chaotic systems and on examples which we present, there is further potential for chaotic entanglement to be naturally occurring. A discussion of this and of the implications of chaotic entanglement in future research investigations is also presented.


1994 ◽  
Vol 3 (3) ◽  
pp. 55-66 ◽  
Author(s):  
Lesley B. Olswang ◽  
Barbara Bain

For many of us, not having data concerning a client’s progress during treatment is tantamount to being unprepared for a lecture, or showing up at a birthday party without a present—totally unthinkable. This zealous position is based on the assumption that clinical decisions regarding treatment efficacy should be based on data. Data, in this case, refers to both quantitative and qualitative information that provides evidence for deciding the course of treatment. This is not to say that data can and should be collected on every aspect of the clinical process. Indeed, intuitive decision-making on the part of the speech-language pathologist is often warranted. But in general, a series of decisions regarding whether or not treatment is working, can and should be based on data. This article examines the ways in which we can measure treatment progress, and provides guidelines for the reader in the use of a data-based, decision-making model.


1990 ◽  
Vol 193 ◽  
Author(s):  
Efthimios Kaxiras

ABSTRACTThe possibility of passivating the Si(100) surface by adsorption of Group-VI atoms (S and Se) is investigated through first-principles calculations. The structure of the ideal (1×1) configuration with the Si surface dangling bonds saturated by full monolayer coverage is examined in detail. The Group-VI adsorbates form covalent bonds to the substrate with bond-lengths very close to the sums of the covalent radii. The bond-angles are larger than in bulk configurations of the Group-VI elements. The ideal (1×1) configuration gives rise to a surface electronic state with large dispersion spanning the entire band-gap of Si. Deviations from this configuration by in-phase or out-of-phase tilting of the adsorbate atoms result in energy costs which can give qualitative information on the relative strength of adsorbate-adsorbate and adsorbate-substrate interactions.


Sign in / Sign up

Export Citation Format

Share Document