Solar activity and the Rotation of the Earth

Author(s):  
R. J. Jady
2021 ◽  
Author(s):  
Igor Shevchenko

Abstract The variations of solar activity and distribution of solar energy due to the rotation of the Earth around its axis and around the Sun exert a strong influence on the self-organization of water molecules. As a result, the rate of hydrolytic processes with the participation of water clusters displays diurnal, very large annual variations, and is also modulated by the 11-year cycles of solar activity. It also depends on the geographic latitude and can be different at the same time in the Northern and Southern Hemispheres. This phenomenon is well accounted for by the influence of muons on the self-organization of water molecules. Muons are constantly generated in the upper atmosphere by the solar wind. They reach the surface of the Earth and can penetrate to some depth underground. Buildings also absorb muons. For this reason, the rate of hydrolysis outside and inside buildings, as well as underground, can differ significantly from each other.


2020 ◽  
Author(s):  
Igor Shevchenko

The variations of solar activity and distribution of solar energy due to the rotation of the Earth around its axis and around the Sun exert a strong influence on water clusters, as a result of which their chemical reactivity in hydrolytic processes can vary in a very wide range. This phenomenon is well manifested in the hydrolysis of the phosphoric acid esters. 5-Year regular investigations (2015-2019) of the hydrolysis of triethylphosphite in acetonitrile show that the rate of this reaction with all other conditions being equal displays diurnal and annual variations, and is also modulated by the 11-year cycles of solar activity.


2019 ◽  
Author(s):  
Dmitry M. Sonechkin

Abstract. About 250 years ago L. Euler has derived a system of three quadratic-nonlinear differential equations to depict the rotation of the Earth as a rigid body. Neglecting a small distinction between the equatorial inertia moments, he reduced this system to much simpler linear one, and concluded that the Earth's pole must experience a harmonic oscillation of the 304-day period. Astronomers could not find this oscillation, but instead, S.C Chandler has found two powerful wobbles with the 12- and ~ 14-month periods in reality. Adhering to the Euler's linearization, astronomers can not explain the nature of the later wobble up to now. I indicate that the neglect by the above small distinction (“a small parameter” of the Euler's primary nonlinear equations) is not admissible because the effect of this parameter is singular. Analysing the primary equations by an asymptotic technique, I demonstrate that the Chandler wobble tones are formed from combinational harmonics of the Euler's 304-day oscillation, long-term Luni-Solar tides as well as the 22-year cycle of the heliomagnetic activity. Correlating simultaneous variations of the wobble and a solar activity index, I corroborate that the Chandler wobble is really affected by the Sun.


2020 ◽  
Author(s):  
Igor Shevchenko

The variations of solar activity and distribution of solar energy due to the rotation of the Earth around its axis and around the Sun exert a strong influence on water clusters, as a result of which their chemical reactivity in hydrolytic processes can vary in a very wide range. This phenomenon is well manifested in the hydrolysis of the phosphoric acid esters. 5-Year regular investigations (2015-2019) of the hydrolysis of triethylphosphite in acetonitrile show that the rate of this reaction with all other conditions being equal displays diurnal and annual variations, and is also modulated by the 11-year cycles of solar activity.


1985 ◽  
Vol 38 (02) ◽  
pp. 216-217
Author(s):  
G. A. Wilkins

New techniques of measurement make it possible in 1984 to determine positions on the surface of the Earth to a much higher precision than was possible in 1884. If we look beyond the requirements of navigation we can see useful applications of global geodetic positioning to centimetric accuracy for such purposes as the control of mapping and the study of crustal movements. These new techniques depend upon observations of external objects, such as satellites or quasars rather than stars, and they require that the positions of these objects and the orientation of the surface of the Earth are both known with respect to an appropriate external reference system that is ‘fixed’ in space. We need networks of observing stations and analysis centres that monitor the motions of the external objects and the rotation of the Earth. Observations of stars by a transit circle are no longer adequate for this purpose.


1992 ◽  
Vol 30 (2) ◽  
pp. 111-111
Author(s):  
H. Richard Crane

2016 ◽  
Vol 34 (11) ◽  
pp. 961-974 ◽  
Author(s):  
Lukas Maes ◽  
Romain Maggiolo ◽  
Johan De Keyser

Abstract. The cold ions (energy less than several tens of electronvolts) flowing out from the polar ionosphere, called the polar wind, are an important source of plasma for the magnetosphere. The main source of energy driving the polar wind is solar illumination, which therefore has a large influence on the outflow. Observations have shown that solar illumination creates roughly two distinct regimes where the outflow from a sunlit ionosphere is higher than that from a dark one. The transition between both regimes is at a solar zenith angle larger than 90°. The rotation of the Earth and its orbit around the Sun causes the magnetic polar cap to move into and out of the sunlight. In this paper we use a simple set-up to study qualitatively the effects of these variations in solar illumination of the polar cap on the ion flux from the whole polar cap. We find that this flux exhibits diurnal and seasonal variations even when combining the flux from both hemispheres. In addition there are asymmetries between the outflows from the Northern Hemisphere and the Southern Hemisphere.


Genes ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 567 ◽  
Author(s):  
Manjul Singh ◽  
Paloma Mas

The rotation of the Earth entails changes in environmental conditions that pervasively influence an organism’s physiology and metabolism. An internal cellular mechanism known as the circadian clock acts as an internal timekeeper that is able to perceive the changes in environmental cues to generate 24-h rhythms in synchronization with daily and seasonal fluctuations. In plants, the circadian clock function is particularly important and regulates nearly every aspect of plant growth and development as well as proper responses to stresses. The circadian clock does not function in isolation but rather interconnects with an intricate network of different pathways, including those of phytohormones. Here, we describe the interplay of the circadian clock with a subset of hormones in Arabidopsis. The molecular components directly connecting the circadian and hormone pathways are described, highlighting the biological significance of such connections in the control of growth, development, fitness, and survival. We focus on the overlapping as well as contrasting circadian and hormonal functions that together provide a glimpse on how the Arabidopsis circadian system regulates hormone function in response to endogenous and exogenous cues. Examples of feedback regulation from hormone signaling to the clock are also discussed.


Sign in / Sign up

Export Citation Format

Share Document