Experiences with Alternative Electron Acceptors in the Large-Scale In-Situ Bioremediation of Aromatic Hydrocarbons

1995 ◽  
pp. 1147-1148
Author(s):  
G. Battermann ◽  
M. Meier-Löhr
1995 ◽  
Vol 31 (1) ◽  
pp. 1-14 ◽  
Author(s):  
W. Zhang ◽  
E. Bouwer ◽  
L. Wilson ◽  
N. Durant

Bioremediation is an emerging in situ treatment technology for soil and groundwater cleanup. Research in the past decade has made significant progress toward understanding how to stimulate microbial growth in the subsurface by optimizing the physical/chemical conditions. Recent laboratory observations and field demonstrations indicate that bioremediation can also be limited by mass transfer processes. In this paper, factors restricting microbial growth are reviewed, and the importance of bioavailability on the performance of in situ bioremediation is discussed by using aromatic hydrocarbons as model contaminants. Successful application of bioremediation relies upon an understanding of interactions among microorganisms, organic contaminants and soil/aquifer materials. Applications of biofilm kinetics toward this goal are addressed. Model simulations and laboratory studies suggest that both low temperature and slow desorption rate could greatly lengthen the time required for effective in situ bioremediation of aromatic hydrocarbons.


2020 ◽  
pp. 413-424
Author(s):  
Katherine A. Smith ◽  
Alexander Vandenbohed ◽  
Ann Maes ◽  
Willy Verstraet ◽  
Luc Lebbe

Understanding the wide variety of aquifer physical, chemical and microbiological processes is necessary for the effective implementation of in situ bioaugmentation strategies. Therefore, a numerical density dependent 3D solute transport model MOCDENS3D was developed in combination with field experiments to characterise the subsurface control parameters. This also allowed for the study of the effect of aquifer heterogeneity upon the fate and transport of the reactive solutes and the injected bacterial strain.  These investigations were conducted during the evaluation of an in situ bioremediation strategy intended for the cleanup of a test site. The site lies within a historically 1,2- dichloroethane (l ,2-DCA) contaminated sandy phreatic aquifer in Tessenderlo (Belgium). The halogenated compound has a putative carcinogenic effect and a high recalcitrance towards reductive dechlorination. The isolation of the novel anaerobic Desulfitobacterium dichloroeliminans strain DCAI from the soil matrix of the Tessenderlo site at LabMET (Ghent University, Belgium) offered perspectives for the execution of a bioaugmentation strategy at this site, since this strain selectively degrades 1,2-DCA to ethene under anaerobic conditions without the production of toxic vinyl chloride.  First, a step-drawdown pumping test followed by a forced gradient multiple-well tracer test was conducted to obtain values for the hydrogeological parameters such as hydraulic conductivity, longitudinal and transverse dispersivity and effective porosity. The solute transport model was used as a predictive field-scale modelling tool in aid of designing the preliminary field tests as well as the bacterial injection. The aim of the latter was the assessment of the transport of the augmented strain DCAI. Prior modelling of these experiments provides an insight in the possible design strategies and hence, it can be concluded that profound preliminary field investigation aided by a solute transport model such as MOCDENS3D, results in a more time- and cost-effective execution of large scale cleanup processes of contaminated sites.


2006 ◽  
Vol 14 (2) ◽  
pp. 478-482
Author(s):  
Jamie Robinson ◽  
Russell Thomas ◽  
Steve Wallace ◽  
Paddy Daly ◽  
Robert Kalin

Author(s):  
A. Safonov ◽  
N. Andriushchenko ◽  
N. Popova ◽  
K. Boldyrev

Проведен анализ сорбционных характеристик природных материалов (вермикулит, керамзит, перлит, цеолит Трейд ) при очистке кадмий- и хромсодержащих сточных вод с высокой нагрузкой по ХПК. Установлено, что цеолит обладает максимальными сорбционными характеристиками для Cd и Cr и наименьшим биологическим обрастанием. При использовании вермикулита и керамзита или смесей на их основе можно ожидать увеличения сорбционной емкости для Cd и Сr при микробном обрастании, неизбежно происходящем в условиях контакта с водами, загрязненными органическими соединениями и биогенами. При этом биообрастание может повысить иммобилизационную способность материалов для редоксзависимых металлов за счет ферментативных ресурсов бактериальных клеток, использующих их в качестве акцепторов электронов. Эффект микробного обрастания разнонаправленно изменял параметры материалов: для Cr в большинстве случаев уменьшение и для Cd значительное увеличение. При этом дополнительным эффектом иммобилизации Cr является его биологическое восстановление биопленками. Варьируя состав сорбционного материала, можно подбирать смеси, оптимально подходящие для очистки вод инфильтратов с полигонов твердых бытовых отходов с высокой нагрузкой по ХПК и биогенным элементам как при использовании in situ, так и в системах на поверхности.The analysis of the sorption characteristics of natural materials (vermiculite, expanded clay, perlite, Trade zeolite) during the purification of cadmium and chromium-containing leachate with a high COD load was carried out. It was determined that zeolite had the maximum sorption capacity for Cd and Cr and the lowest biological fouling. When using vermiculite and expanded clay or mixtures on their basis, one can expect an increase in the sorption capacity for Cd and Cr during microbial fouling that inevitably occurs during contacting with water polluted with organic compounds and nutrients. In this case biofouling can increase the immobilization properties of materials for redox-dependent metals due to the enzymatic resources of bacterial cells that use them as electron acceptors. The effect of microbial fouling changed the parameters of materials in different directions: for Cr, in most cases, downward, and for Cd, significantly upward. Moreover, chromium biological recovery by biofilms is an additional effect of immobilization. Varying the composition of the sorption material provides for selecting mixtures that are optimally suitable for the purification of leachates from solid waste landfills with high COD and nutrients load, both when used in situ and in surface systems.


2009 ◽  
Author(s):  
Paul Hatzinger ◽  
Jay Diebold

2000 ◽  
Vol 42 (5-6) ◽  
pp. 371-376 ◽  
Author(s):  
J.A. Puhakka ◽  
K.T. Järvinen ◽  
J.H. Langwaldt ◽  
E.S. Melin ◽  
M.K. Männistö ◽  
...  

This paper reviews ten years of research on on-site and in situ bioremediation of chlorophenol contaminated groundwater. Laboratory experiments on the development of a high-rate, fluidized-bed process resulted in a full-scale, pump-and-treat application which has operated for several years. The system operates at ambient groundwater temperature of 7 to 9°C at 2.7 d hydraulic retention time and chlorophenol removal efficiencies of 98.5 to 99.9%. The microbial ecology studies of the contaminated aquifer revealed a diverse chlorophenol-degrading community. In situ biodegradation of chlorophenols is controlled by oxygen availability, only. Laboratory and pilot-scale experiments showed the potential for in situ aquifer bioremediation with iron oxidation and precipitation as a potential problem.


2018 ◽  
Vol 23 (suppl_1) ◽  
pp. e16-e16
Author(s):  
Ahmed Moussa ◽  
Audrey Larone-Juneau ◽  
Laura Fazilleau ◽  
Marie-Eve Rochon ◽  
Justine Giroux ◽  
...  

Abstract BACKGROUND Transitions to new healthcare environments can negatively impact patient care and threaten patient safety. Immersive in situ simulation conducted in newly constructed single family room (SFR) Neonatal Intensive Care Units (NICUs) prior to occupancy, has been shown to be effective in testing new environments and identifying latent safety threats (LSTs). These simulations overlay human factors to identify LSTs as new and existing process and systems are implemented in the new environment OBJECTIVES We aimed to demonstrate that large-scale, immersive, in situ simulation prior to the transition to a new SFR NICU improves: 1) systems readiness, 2) staff preparedness, 3) patient safety, 4) staff comfort with simulation, and 5) staff attitude towards culture change. DESIGN/METHODS Multidisciplinary teams of neonatal healthcare providers (HCP) and parents of former NICU patients participated in large-scale, immersive in-situ simulations conducted in the new NICU prior to occupancy. One eighth of the NICU was outfitted with equipment and mannequins and staff performed in their native roles. Multidisciplinary debriefings, which included parents, were conducted immediately after simulations to identify LSTs. Through an iterative process issues were resolved and additional simulations conducted. Debriefings were documented and debriefing transcripts transcribed and LSTs classified using qualitative methods. To assess systems readiness and staff preparedness for transition into the new NICU, HCPs completed surveys prior to transition, post-simulation and post-transition. Systems readiness and staff preparedness were rated on a 5-point Likert scale. Average survey responses were analyzed using dependent samples t-tests and repeated measures ANOVAs. RESULTS One hundred eight HCPs and 24 parents participated in six half-day simulation sessions. A total of 75 LSTs were identified and were categorized into eight themes: 1) work organization, 2) orientation and parent wayfinding, 3) communication devices/systems, 4) nursing and resuscitation equipment, 5) ergonomics, 6) parent comfort; 7) work processes, and 8) interdepartmental interactions. Prior to the transition to the new NICU, 76% of the LSTs were resolved. Survey response rate was 31%, 16%, 7% for baseline, post-simulation and post-move surveys, respectively. System readiness at baseline was 1.3/5,. Post-simulation systems readiness was 3.5/5 (p = 0.0001) and post-transition was 3.9/5 (p = 0.02). Staff preparedness at baseline was 1.4/5. Staff preparedness post-simulation was 3.3/5 (p = 0.006) and post-transition was 3.9/5 (p = 0.03). CONCLUSION Large-scale, immersive in situ simulation is a feasible and effective methodology for identifying LSTs, improving systems readiness and staff preparedness in a new SFR NICU prior to occupancy. However, to optimize patient safety, identified LSTs must be mitigated prior to occupancy. Coordinating large-scale simulations is worth the time and cost investment necessary to optimize systems and ensure patient safety prior to transition to a new SFR NICU.


2021 ◽  
Vol 13 (2) ◽  
pp. 228
Author(s):  
Jian Kang ◽  
Rui Jin ◽  
Xin Li ◽  
Yang Zhang

In recent decades, microwave remote sensing (RS) has been used to measure soil moisture (SM). Long-term and large-scale RS SM datasets derived from various microwave sensors have been used in environmental fields. Understanding the accuracies of RS SM products is essential for their proper applications. However, due to the mismatched spatial scale between the ground-based and RS observations, the truth at the pixel scale may not be accurately represented by ground-based observations, especially when the spatial density of in situ measurements is low. Because ground-based observations are often sparsely distributed, temporal upscaling was adopted to transform a few in situ measurements into SM values at a pixel scale of 1 km by introducing the temperature vegetation dryness index (TVDI) related to SM. The upscaled SM showed high consistency with in situ SM observations and could accurately capture rainfall events. The upscaled SM was considered as the reference data to evaluate RS SM products at different spatial scales. In regard to the validation results, in addition to the correlation coefficient (R) of the Soil Moisture Active Passive (SMAP) SM being slightly lower than that of the Climate Change Initiative (CCI) SM, SMAP had the best performance in terms of the root-mean-square error (RMSE), unbiased RMSE and bias, followed by the CCI. The Soil Moisture and Ocean Salinity (SMOS) products were in worse agreement with the upscaled SM and were inferior to the R value of the X-band SM of the Advanced Microwave Scanning Radiometer 2 (AMSR2). In conclusion, in the study area, the SMAP and CCI SM are more reliable, although both products were underestimated by 0.060 cm3 cm−3 and 0.077 cm3 cm−3, respectively. If the biases are corrected, then the improved SMAP with an RMSE of 0.043 cm3 cm−3 and the CCI with an RMSE of 0.039 cm3 cm−3 will hopefully reach the application requirement for an accuracy with an RMSE less than 0.040 cm3 cm−3.


Sign in / Sign up

Export Citation Format

Share Document