Canyon-filling debrite indicates that canyon erosion and large-scale mass movement off Georges Bank, USA, are unrelated processes

Author(s):  
D. W. O’Leary

<i>Abstract</i>.—Zooplankton communities perform a critical role as secondary producers in marine ecosystems. They are vulnerable to climate-induced changes in the marine environment, including temperature, stratification, and circulation, but the effects of these changes are difficult to discern without sustained ocean monitoring. The physical, chemical, and biological environment of the Gulf of Maine, including Georges Bank, is strongly influenced by inflow from the Scotian Shelf and through the Northeast Channel, and thus observations both in the Gulf of Maine and in upstream regions are necessary to understand plankton variability and change in the Gulf of Maine. Large-scale, quasi synoptic plankton surveys have been performed in the Gulf of Maine since Bigelow’s work at the beginning of the 20th century. More recently, ongoing plankton monitoring efforts include Continuous Plankton Recorder sampling in the Gulf of Maine and on the Scotian Shelf, U.S. National Marine Fisheries Service’s MARMAP (Marine Resources Monitoring, Assessment, and Prediction) and EcoMon (Ecosystem Monitoring) programs sampling the northeast U.S. Continental Shelf, including the Gulf of Maine, and Fisheries and Oceans Canada’s Atlantic Zone Monitoring Program on the Scotian Shelf and in the eastern Gulf of Maine. Here, we review and compare past and ongoing zooplankton monitoring programs in the Gulf of Maine region, including Georges Bank and the western Scotian Shelf, to facilitate retrospective analysis and broadscale synthesis of zooplankton dynamics in the Gulf of Maine. Additional sustained sampling at greater-than-monthly frequency at selected sites in the Gulf of Maine would be necessary to detect changes in phenology (i.e. seasonal timing of biological events). Sustained zooplankton sampling in critical nearshore fish habitats and in key feeding areas for upper trophic level organisms, such as marine mammals and seabirds, would yield significant insights into their dynamics. The ecosystem dynamics of the Gulf of Maine are strongly influenced by large-scale forcing and variability in upstream inflow. Improved coordination of sampling and data analysis among monitoring programs, effective data management, and use of multiple modeling approaches will all enhance the mechanistic understanding of the structure and function of the Gulf of Maine pelagic ecosystem.


Author(s):  
Martin Mergili

Snow- and ice-related hazardous processes threaten society in tropical to high-latitude mountain areas worldwide and at highly variable time scales. On the one hand, small snow avalanches are recorded in high numbers every winter. On the other hand, glacial lake outburst floods (GLOFs) or large-scale volcano–ice interactions occur less frequently but may evolve into destructive process chains resulting in major disasters. These extreme examples document the huge field of types, magnitudes, and frequencies of snow- and ice-related hazardous processes. Mountain societies have learned to cope with natural hazards for centuries, guided by personal experiences and oral and written tradition. Historical records are today still important as a basis to mitigate snow- and ice-related hazards. They are complemented by a broad array of observation and modeling techniques. These techniques differ among themselves with regard to (1) the type of process under investigation and (2) the scale and purpose of investigation. Multi-scale monitoring and warning systems for snow avalanches are in operation in densely populated mid-latitude mountain areas. They build on meteorological and snow profile data in combination with a large pool of expert knowledge. In contrast, ice-related processes such as ice- or rock-ice avalanches, GLOFs, or associated process chains cause damage less frequently in space and time, so that societies are less well adapted. Even though the hazard sources are often far from the society—making field observation challenging—flows travelling for tens of kilometers sometimes impact populated areas. These hazards are strongly influenced by climate change–induced glacier and permafrost dynamics. On the regional or national scale, the evolution of such hazards has to be monitored at short intervals through aerial and satellite imagery and terrain data, employing geographic information systems (GIS). Known hazardous situations have to be monitored in the field. Physical models—applied either in the laboratory or at real-world sites—are employed to explore the mobility of hazardous processes. Since the 1950s, however, computer models have increasingly gained importance in exploring possible travel distances, impact areas, velocities, and impact forces of events. While simple empirical-statistical approaches are used at broad scales in combination with GIS, advanced numeric models are applied to analyze specific case studies. However, the input parameters for these models are uncertain so that (1) the model results have to be validated with observations and (2) appropriate strategies to deal with the uncertainties have to be applied before using the model results for hazard zoning or dimensioning of protective structures. Due to rapid atmospheric warming and related changes in the cryosphere, hazard situations beyond historical experiences are expected to be increasingly relevant in the future. Scenario-based modeling of complex systems and process chains therefore represents an emerging research direction.


2020 ◽  
Vol 12 (3) ◽  
pp. 561 ◽  
Author(s):  
Bruno Adriano ◽  
Naoto Yokoya ◽  
Hiroyuki Miura ◽  
Masashi Matsuoka ◽  
Shunichi Koshimura

The rapid and accurate mapping of large-scale landslides and other mass movement disasters is crucial for prompt disaster response efforts and immediate recovery planning. As such, remote sensing information, especially from synthetic aperture radar (SAR) sensors, has significant advantages over cloud-covered optical imagery and conventional field survey campaigns. In this work, we introduced an integrated pixel-object image analysis framework for landslide recognition using SAR data. The robustness of our proposed methodology was demonstrated by mapping two different source-induced landslide events, namely, the debris flows following the torrential rainfall that fell over Hiroshima, Japan, in early July 2018 and the coseismic landslide that followed the 2018 Mw6.7 Hokkaido earthquake. For both events, only a pair of SAR images acquired before and after each disaster by the Advanced Land Observing Satellite-2 (ALOS-2) was used. Additional information, such as digital elevation model (DEM) and land cover information, was employed only to constrain the damage detected in the affected areas. We verified the accuracy of our method by comparing it with the available reference data. The detection results showed an acceptable correlation with the reference data in terms of the locations of damage. Numerical evaluations indicated that our methodology could detect landslides with an accuracy exceeding 80%. In addition, the kappa coefficients for the Hiroshima and Hokkaido events were 0.30 and 0.47, respectively.


2020 ◽  
Author(s):  
Chih-Hao Hsu ◽  
Chuan-Yi Huang ◽  
Ting-Chi Tsao ◽  
Hsiao-Yuan Yin ◽  
Hsiao-Yu Huang ◽  
...  

&lt;p&gt;This study added the dams and retain basin according to their dimensions measured with UAV onto the original 5m-resolition DEM to compare the effect of mitigation structures to debris flow hazard. The original and the modified DEMs were both applied to simulate the consequences by using RAMMS::Debris Flow (RApid Mass Movement Simulation) model.&lt;/p&gt;&lt;p&gt;Hazard map is the best tool to provide the information of debris flow hazard in Taiwan. It has an important role to play in evacuating the residents within the affected zone during typhoon season. For the reason, debris flow hazard maps become a useful tool for local government to execute the evacuation. As the mitigation structure is constructed, the intensity of debris flow hazard reduces.&lt;/p&gt;&lt;p&gt;The Nantou DF190 debris flow potential torrent is located in central Taiwan. In 1996 when Typhoon Herb stroke, 470,000 cubic-meter of debris were washed out and deposited in 91,200 square-meter area (Yu et al., 2006), and the event caused the destruction of 10 residential houses with 2 fatalities. After the event the Soil and Water Conservation Bureau constructed a 100-meter long sabo dam and sediment retain basin with capacity of 60,000 cubic-meters. In order to compare the difference of affected zone before and after the construction of mitigation structures, the study applies RAMMS to simulate the above-mentioned event.&lt;/p&gt;&lt;p&gt;The result shows when large-scale debris flow occurs, most of the sediments still overflow and deposit on the fan with shape similar to the 1996 Typhoon Herb event. However, the intensity has reduced significantly with 50% less in area, several meters less in inundation depth and 50% less in flow velocity approximately. The comparison shows the effect of mitigation structures and could provide valuable information for debris flow hazard mapping.&lt;/p&gt;&lt;p&gt;Key Words: Debris flow, RAMMS, Hazard map, Mitigation, Taiwan&lt;/p&gt;


Author(s):  
Sergio DellaPergola

This chapter surveys the demographic development of Israel/Palestine from antiquity through the present and looking toward the future. Territory and habitability is described regarding changing boundary definitions and internal divisions that have reflected shifting political rule. Population change is examined in the long term, noting the significant historical ups and downs in population size and socioeconomic development. The development of contemporary population in Israel and Palestine reflects large-scale international migration, including mass movement of Jewish and Arab refugees. Variable fertility levels and birth rates have also significantly affected the pace of population growth. Attention is paid to the more recent balance of Jews and Palestinians over the whole territory between the Mediterranean Sea and the Jordan River, and an overview is presented of the distribution of world Jewish and Palestinian diasporas. Finally, population projections for the Jewish people, the state of Israel, and the whole territory of Israel/Palestine are presented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Choufany ◽  
Davide Martinetti ◽  
Samuel Soubeyrand ◽  
Cindy E. Morris

AbstractThe collection and analysis of air samples for the study of microbial airborne communities or the detection of airborne pathogens is one of the few insights that we can grasp of a continuously moving flux of microorganisms from their sources to their sinks through the atmosphere. For large-scale studies, a comprehensive sampling of the atmosphere is beyond the scopes of any reasonable experimental setting, making the choice of the sampling locations and dates a key factor for the representativeness of the collected data. In this work we present a new method for revealing the main patterns of air-mass connectivity over a large geographical area using the formalism of spatio-temporal networks, that are particularly suitable for representing complex patterns of connection. We use the coastline of the Mediterranean basin as an example. We reveal a temporal pattern of connectivity over the study area with regions that act as strong sources or strong receptors according to the season of the year. The comparison of the two seasonal networks has also allowed us to propose a new methodology for comparing spatial weighted networks that is inspired from the small-world property of non-spatial networks.


Author(s):  
Roman Ivantysyn ◽  
Jürgen Weber

Motivated by the ever-stricter demands by lawmakers to lower emissions of mobile machinery and increasing fuel prices, mobile machinery has gone through a paradigm shift. Fuel efficiency has become a major selling point of machine producers. Even the heavy machinery branch, which is mainly dominated by reliability, productivity and serviceability, has started to feel this change. Hydraulic systems of large scale, as can be found in mining excavators, have typically been based on simplicity and durability. Typical architectures are open-center hydraulic systems, which were designed with robustness and productivity in mind; however they lack competiveness with other hydraulic systems in terms of energy efficiency. Displacement control has shown promising potential especially in multi-actuator machines such as excavators. The technology has so far been demonstrated in closed circuit applications on small-scale machines (below 30 t). Large scale excavators however should in general be more suitable for displacement control due to their relatively small hydraulic component cost compared to the machine and operating cost, larger energy recovery potential due to larger mass movement, more flexibility in space management and greater hydraulic power installed. Large machines feature already several smaller pumps instead of a single large pump, which is important with respect to the fact that displacement control is based on one pump per actuator. A challenge for displacement control on large-scale machinery is handling their high volumetric flow-demands on the system. Today many large excavators feature a float valve, which short-circuits the cylinder chambers and ensures rapid lowering of the attachment under aiding load. Float valves ensure fast cycle times and are essential for high productivity, however incorporating this feature in displacement control is a challenge, especially in closed circuit systems. Open circuit displacement control systems have greater flexibility than closed circuit solutions in working with float-valves and dealing with the high volumetric flows. Additionally the open circuit architecture is ideal for pump-flow-sharing, the strategy to connect two or more pumps with one actuator, which can be practiced when not all actuators move at the same time. This paper compares displacement control in open circuit form with valve-controlled actuation in a mining excavator and shows several fuel saving potentials. The Open Center system was simulated and results were validated with measurements. The proposed open circuit displacement control solutions are implemented virtually and replace the valve-controlled system. Components and system-architecture were carefully chosen in order to ensure reliability, minimal component changes and redundancy that compare to the robustness of today’s system.


1995 ◽  
Vol 11 ◽  
Author(s):  
J. T. Weidinger ◽  
J. M. Schramm

The large-scale mass movement at Tsergo-Ri (Langtang valley) in north-central Nepal was mapped in detail and an engineering geological map was prepared. Five different phases of displacement, deposition and erosion of the landslide are reconstructed. The present morphology of the area is largely the result of the above movement.


2007 ◽  
Vol 171-172 ◽  
pp. 90-107 ◽  
Author(s):  
C. Meisina ◽  
F. Zucca ◽  
F. Conconi ◽  
F. Verri ◽  
D. Fossati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document