Assessment of Low-Temperature Cracking in Asphalt Concrete Pavements Using an Acoustic Emission Approach

Author(s):  
Zhe Sun ◽  
Behzad Behnia ◽  
William G. Buttlar ◽  
Henrique Reis
Author(s):  
Lihui Sun ◽  
William G. Buttlar ◽  
Behzad Behnia ◽  
Henrique Reis

Low-temperature cracking is a major form of distress in asphalt concrete pavements located in cold regions. A review of the background and fundamental aspects of the Acoustic Emission (AE) based approach with a brief overview of its application to estimate low-temperature performance of unaged, short-term, and long-term aged binders as well as asphalt concrete materials are presented. A comparison of the cracking temperatures estimated using the traditional rheological-based method and the embrittlement temperatures obtained using the proposed AE-based method is presented and discussed. In addition, embrittlement temperatures of asphalt concrete samples extracted from field cores are also presented and discussed. Results indicate that the AE-based method is faster and more accurate than the traditionally used methods. Moreover, results suggest that AE could be considered as a viable rapid, inexpensive, yet precise characterization approach for pavement materials, which could be effectively used towards enhancing pavement sustainability and resiliency.


2018 ◽  
Vol 163 ◽  
pp. 05012
Author(s):  
Amal Abdelaziz ◽  
Chun-Hsing Ho ◽  
Matthew Snyder

Low temperature cracking is one of the most common distress types in asphalt concrete pavements, particularly in cold regions. Many factors influence the behaviour of asphalt concrete pavements at low temperatures, such as the applied traffic load, environmental conditions and material characteristics. Asphalt binders are one of the primary factors that influence material properties. The purpose of this study is to compare the performance of two types of asphalt binders: styrene-butadiene-styrene (SBS) modified asphalt binder and unmodified asphalt binder in resisting low temperature cracking. The study was conducted in Flagstaff, located at the area of Northern Arizona, in the United States. Asphalt samples were collected from the paving sections and were compacted and trimmed into small beams. Bending Beam Rheometer tests were performed, using the trimmed specimens at temperatures of -6°C, -12°C and -18°C. Based on the results of the study, it was concluded that, SBS modified asphalt binder performs better in resisting low temperature cracking, compared to the unmodified binder. Based on the study outcomes, it is recommended to use SBS polymer modified polymers in areas subjected to severe cold weather events to maximize the life span of asphalt concrete pavements.


2014 ◽  
Vol 505-506 ◽  
pp. 35-38 ◽  
Author(s):  
Chun Mei Gao ◽  
Shuo Han ◽  
Shuang Chen ◽  
He Li

Conduct experimental study on low temperature performance about asphalt concrete with 6mm basalt fiber and without basalt, 6mm fibers whose dosage is 0.12%0.15% and 0.17%, test method is the indirect tensile test,test temperature is-10±0.5°C. The results show that basalt fiber improved the strength and failure strain of asphalt concrete in low temperature damage, reduced the failure stiffness,in which the maximum increased value of breaking strength is 3.41%, the maximum increased value of failure strain is 38.83%,and the maximum reduced value of failure stiffness is 25.52%,obviously improved low temperature cracking resistance of asphalt concrete;for low temperature performance, the optimum amount of value about 6mm basalt fiber is 0.15% .


Author(s):  
Hannele K. Zubeck ◽  
Ted S. Vinson

A deterministic model and a probabilistic model were developed to predict low-temperature crack spacing as a function of time using thermal stress restrained specimen test results, pavement thickness and bulk density, pavement restraint conditions, and air temperature. The effect of aging on pavement properties was incorporated in the models by predicting the field aging with long-term oven aging treatment in the laboratory. The calculation of the crack spacing is based on the theory that the pavement slab cracks when the pavement temperature reaches the cracking temperature of the mixture and the slab is fully restrained. The deterministic model predicts crack spacing with time, whereas the probabilistic model predicts crack spacing and its variation with time and yields the reliability of the design with regard to a minimum acceptable crack spacing criterion defined by road authorities. The probabilistic model is recommended for use in predicting the low-temperature cracking of asphalt concrete mixtures.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Tao Ma ◽  
Yao Zhang ◽  
Hao Wang ◽  
Xiaoming Huang ◽  
Yongli Zhao

This study characterized the impacts of air voids on the low-temperature cracking behavior of dense-graded asphalt concrete. Virtual low-temperature bending beam test for dense-graded asphalt concrete was built and executed by discrete element method and PFC3D (particle flow code in three dimensions). Virtual tests were applied to analyze the impacts by content, distribution, and size of air voids on the low-temperature properties of dense-graded asphalt concrete. The results revealed that higher air void content results in worse low-temperature property of dense-graded asphalt concrete, especially when the air void content exceeds the designed air content; even with the same designed air void content, different distributing condition of air voids within asphalt concrete leads to different low-temperature properties of asphalt concrete, especially when the air void content in the central-lower part of testing sample varies. Bigger size of single air void which tends to form interconnected air voids within asphalt concrete has more harmful impacts on the low-temperature properties of asphalt concrete. Thus, to achieve satisfied low-temperature properties of dense-graded asphalt concrete, it is critical to ensure the designed air void content, improve the distribution of air voids, and reduce the interconnected air voids for dense-graded asphalt concrete.


Sign in / Sign up

Export Citation Format

Share Document