A Study of the Characteristics of Groundwater Solute Transport Parameters

Author(s):  
Biswajit Chakravorty ◽  
N. C. Ghosh
2015 ◽  
Vol 19 (6) ◽  
pp. 2617-2635 ◽  
Author(s):  
M. Sprenger ◽  
T. H. M. Volkmann ◽  
T. Blume ◽  
M. Weiler

Abstract. Determining the soil hydraulic properties is a prerequisite to physically model transient water flow and solute transport in the vadose zone. Estimating these properties by inverse modelling techniques has become more common within the last 2 decades. While these inverse approaches usually fit simulations to hydrometric data, we expanded the methodology by using independent information about the stable isotope composition of the soil pore water depth profile as a single or additional optimization target. To demonstrate the potential and limits of this approach, we compared the results of three inverse modelling strategies where the fitting targets were (a) pore water isotope concentrations, (b) a combination of pore water isotope concentrations and soil moisture time series, and (c) a two-step approach using first soil moisture data to determine water flow parameters and then the pore water stable isotope concentrations to estimate the solute transport parameters. The analyses were conducted at three study sites with different soil properties and vegetation. The transient unsaturated water flow was simulated by solving the Richards equation numerically with the finite-element code of HYDRUS-1D. The transport of deuterium was simulated with the advection-dispersion equation, and a modified version of HYDRUS was used, allowing deuterium loss during evaporation. The Mualem–van Genuchten and the longitudinal dispersivity parameters were determined for two major soil horizons at each site. The results show that approach (a), using only the pore water isotope content, cannot substitute hydrometric information to derive parameter sets that reflect the observed soil moisture dynamics but gives comparable results when the parameter space is constrained by pedotransfer functions. Approaches (b) and (c), using both the isotope profiles and the soil moisture time series, resulted in good simulation results with regard to the Kling–Gupta efficiency and good parameter identifiability. However, approach (b) has the advantage that it considers the isotope data not only for the solute transport parameters but also for water flow and root water uptake, and thus increases parameter realism. Approaches (b) and (c) both outcompeted simulations run with parameters derived from pedotransfer functions, which did not result in an acceptable representation of the soil moisture dynamics and pore water stable isotope composition. Overall, parameters based on this new approach that includes isotope data lead to similar model performances regarding the water balance and soil moisture dynamics and better parameter identifiability than the conventional inverse model approaches limited to hydrometric fitting targets. If only data from isotope profiles in combination with textural information is available, the results are still satisfactory. This method has the additional advantage that it will not only allow us to estimate water balance and response times but also site-specific time variant transit times or solute breakthrough within the soil profile.


1997 ◽  
Vol 1 (4) ◽  
pp. 873-893 ◽  
Author(s):  
D. Jacques ◽  
J. Vanderborght ◽  
D. Mallants ◽  
D.-J. Kim ◽  
H. Vereecken ◽  
...  

Abstract. In this paper the relation between local- and field-scale solute transport parameters in an unsaturated soil profile is investigated. At two experimental sites, local-scale steady-state solute transport was measured in-situ using 120 horizontally installed TDR probes at 5 depths. Local-scale solute transport parameters determined from BTCs were used to predict field-scale solute transport using stochastic stream tube models (STM). Local-scale solute transport was described by two transport models: (1) the convection-dispersion transport model (CDE), and (2) the stochastic convective lognormat transfer model (CLT). The parameters of the CDE-model were found to be lognormally distributed, whereas the parameters of the CLT model were normally distributed. Local-scale solute transport heterogeneity within the measurement volume of a TDR-probe was an important factor causing field-scale solute dispersion. The study of the horizontal scale-dependency revealed that the variability in the solute transport parameters contributes more to the field-scale dispersion at deeper depths than at depths near the surface. Three STMs were used to upscale the local transport parameters: (i) the stochastic piston flow STM-I assuming local piston flow transport, (ii) the convective-dispersive STM-II assuming local CDE transport, and (iii) the stochastic convective lognormal STM-III assuming local CLT. The STM-I considerably underpredicted the field-scale solute dispersion indicating that local-scale dispersion processes, which are captured within the measurement volume of the TDR-probe, are important to predict field-scale solute transport. STM-II and STM-III both described the field-scale breakthrough curves (BTC) accurately if depth dependent parameters were used. In addition, a reasonable description of the horizontal variance of the local BTCs was found. STM-III was (more) superior to STM-II if only one set of parameters from one depth is used to predict the field-scale solute BTCs at several depths. This indicates that the local-scale solute transport process, as measured with TDR in this study, is in agreement with the CLT-hypothesis.


2005 ◽  
Vol 28 (10) ◽  
pp. 976-984 ◽  
Author(s):  
J. Waniewski ◽  
D. Sobiecka ◽  
M. DĘbowska ◽  
O. Heimbürger ◽  
A. Werynski ◽  
...  

Background Two major types of permanent loss of ultrafiltration capacity (UFC) were previously distinguished among patients treated with CAPD: 1) type HDR with high diffusive peritoneal transport rate of small solutes and low osmotic conductance, but with normal fluid absorption rate, and 2) type HAR with high fluid absorption rate, but with normal diffusive peritoneal transport rate of small solutes and normal osmotic conductance. However, the detailed pattern of changes in peritoneal transport parameters in patients developing loss of ultrafiltration capacity is not known. Objective Analysis of solute and fluid transport parameters in the same patient before and after UFC loss. Patients Seven CAPD patients who had undergone repeated dwell studies, which were carried out before and/or after the onset of UFC loss. Methods Dialysis fluids (2 L) with glucose or a mixture of amino acids as osmotic agent at three basic tonicities were applied during 6 hour dwell studies. Fluid and solute transport parameters were previously shown not to be affected by these dialysis solutions (except by hypertonic amino acid-based solution). Intraperitoneal dialysate volume and fluid absorption rate were assessed using radiolabeled human serum albumin (RISA). Osmotic conductance (aOS) was estimated by a mathematical model as ultrafiltration rate induced by unit osmolality gradient. Diffusive mass transport coefficients, KBD, for glucose, urea, and creatinine were estimated using the modified Babb-Randerson-Farrell model. Results Five patients had increased KBD for small solutes after the onset of UFC loss, and three of them had decreased aOS, whereas two patients had normal aOS. In one of them, aOS decreased with time after the onset of UFC loss with concomitant normalization of glucose absorption. In all studies of these five patients the fluid absorption rate was within the normal range. Two other patients had increased fluid absorption rate (about 5 ml/min), and one of them also had increased KBD for small solutes, in two consecutive dwell studies in each patient with the second study being carried out at 1 and 7 months respectively after the first one. In all four studies in these two patients, the aOS was within the normal range. The sodium dip during dialysis with 3.86% glucose-based solution was lost, not only among most patients with UFC loss related to reduced osmotic conductance, but also in patients with increased KBD. Conclusions The occurrence of two major types of UFC loss was confirmed. However, a case of a mixed type of UFC loss with high fluid absorption rate and high KBD for small solutes, but normal osmotic conductance, and with normalization of initially high KBD for small solutes, linked with decreasing initially normal osmotic conductance, was also found. As a reduced sodium dip with hypertonic glucose solution is not only seen in patients with reduced osmotic conductance, it cannot reliably be used as a single measure of decreased aquaporin function. Permanent ultrafiltration capacity loss may be a dynamic phenomenon with a variety of alterations in peritoneal transport characteristics.


2011 ◽  
Vol 50 (No. 8) ◽  
pp. 333-338 ◽  
Author(s):  
R. Kodešová ◽  
J. Kozák ◽  
O. Vacek

The transport of chlorotoluron in the soil profile under field conditions was studied. The herbicide Syncuran was applied on a four square meter plot using an application rate of 2.5 kg/ha active ingredient. Soil samples were taken after 119 days to study the residual chlorotoluron distribution in the soil profile. HYDRUS-1D (Šimůnek et al. 1998) was used to simulate water movement and herbicide transport in the soil profile. Soil hydraulic properties and their variability were studied previously by Kutílek et al. (1989). The solute transport parameters, like the adsorption isotherm and the degradation rate, were determined in the laboratory. The Freundlich and Langmuir equations were used to fit the experimental data points of the adsorption isotherm, and the affect of each type of adsorption isotherm equation on the solute transport was studied. The chlorotoluron concentrations in soil water tended to be higher for the simulation performed with the Freundlich isotherm then that of the model using the Langmuir isotherm. In both cases, the solution did not pass a depth of8 cm. The simulated chlorotoluron concentrations in soil samples were higher then the observed concentrations when the chlorotoluron degradation was assumed to be in soil water only. Assumption of the solute degradation in both in the solid and the liquid phase significantly improved the accuracy of the solution. The different characters of the simulated and observed chlorotoluron distributions can probably be attributed to the preferential flow of water and solute in the soil profile and by variability of the transport parameters.


1998 ◽  
Vol 62 (5) ◽  
pp. 1172-1178 ◽  
Author(s):  
Francis X. M. Casey ◽  
Robert Horton ◽  
Sally D. Logsdon ◽  
Dan B. Jaynes

Sign in / Sign up

Export Citation Format

Share Document