Fluid and Solute Transport in CAPD Patients before and after Permanent Loss of Ultrafiltration Capacity

2005 ◽  
Vol 28 (10) ◽  
pp. 976-984 ◽  
Author(s):  
J. Waniewski ◽  
D. Sobiecka ◽  
M. DĘbowska ◽  
O. Heimbürger ◽  
A. Werynski ◽  
...  

Background Two major types of permanent loss of ultrafiltration capacity (UFC) were previously distinguished among patients treated with CAPD: 1) type HDR with high diffusive peritoneal transport rate of small solutes and low osmotic conductance, but with normal fluid absorption rate, and 2) type HAR with high fluid absorption rate, but with normal diffusive peritoneal transport rate of small solutes and normal osmotic conductance. However, the detailed pattern of changes in peritoneal transport parameters in patients developing loss of ultrafiltration capacity is not known. Objective Analysis of solute and fluid transport parameters in the same patient before and after UFC loss. Patients Seven CAPD patients who had undergone repeated dwell studies, which were carried out before and/or after the onset of UFC loss. Methods Dialysis fluids (2 L) with glucose or a mixture of amino acids as osmotic agent at three basic tonicities were applied during 6 hour dwell studies. Fluid and solute transport parameters were previously shown not to be affected by these dialysis solutions (except by hypertonic amino acid-based solution). Intraperitoneal dialysate volume and fluid absorption rate were assessed using radiolabeled human serum albumin (RISA). Osmotic conductance (aOS) was estimated by a mathematical model as ultrafiltration rate induced by unit osmolality gradient. Diffusive mass transport coefficients, KBD, for glucose, urea, and creatinine were estimated using the modified Babb-Randerson-Farrell model. Results Five patients had increased KBD for small solutes after the onset of UFC loss, and three of them had decreased aOS, whereas two patients had normal aOS. In one of them, aOS decreased with time after the onset of UFC loss with concomitant normalization of glucose absorption. In all studies of these five patients the fluid absorption rate was within the normal range. Two other patients had increased fluid absorption rate (about 5 ml/min), and one of them also had increased KBD for small solutes, in two consecutive dwell studies in each patient with the second study being carried out at 1 and 7 months respectively after the first one. In all four studies in these two patients, the aOS was within the normal range. The sodium dip during dialysis with 3.86% glucose-based solution was lost, not only among most patients with UFC loss related to reduced osmotic conductance, but also in patients with increased KBD. Conclusions The occurrence of two major types of UFC loss was confirmed. However, a case of a mixed type of UFC loss with high fluid absorption rate and high KBD for small solutes, but normal osmotic conductance, and with normalization of initially high KBD for small solutes, linked with decreasing initially normal osmotic conductance, was also found. As a reduced sodium dip with hypertonic glucose solution is not only seen in patients with reduced osmotic conductance, it cannot reliably be used as a single measure of decreased aquaporin function. Permanent ultrafiltration capacity loss may be a dynamic phenomenon with a variety of alterations in peritoneal transport characteristics.

2013 ◽  
Vol 33 (4) ◽  
pp. 419-425 ◽  
Author(s):  
Jacek Waniewski ◽  
Ramón Paniagua ◽  
Joanna Stachowska–Pietka ◽  
María-de-Jesús Ventura ◽  
Marcela Ávila–Díaz ◽  
...  

BackgroundFluid removal during peritoneal dialysis depends on modifiable factors such as tonicity of dialysis fluids and intrinsic characteristics of the peritoneal transport barrier and the osmotic agent—for example, osmotic conductance, ultrafiltration efficiency, and peritoneal fluid absorption. The latter parameters cannot be derived from tests of the small-solute transport rate. We here propose a simple test that may provide information about those parameters.MethodsVolumes and glucose concentrations of drained dialysate obtained with 3 different combinations of glucose-based dialysis fluid (3 exchanges of 1.36% glucose during the day and 1 overnight exchange of either 1.36%, 2.27%, or 3.86% glucose) were measured in 83 continuous ambulatory peritoneal dialysis (CAPD) patients. Linear regression analyses of daily net ultrafiltration in relation to the average dialysate-to-plasma concentration gradient of glucose allowed for an estimation of the osmotic conductance of glucose and the peritoneal fluid absorption rate, and net ultrafiltration in relation to glucose absorption allowed for an estimation of the ultrafiltration effectiveness of glucose.ResultsThe osmotic conductance of glucose was 0.067 ± 0.042 (milliliters per minute divided by millimoles per milliliter), the ultrafiltration effectiveness of glucose was 16.77 ± 7.97 mL/g of absorbed glucose, and the peritoneal fluid absorption rate was 0.94 ± 0.97 mL/min (if estimated concomitantly with osmotic conductance) or 0.93 ± 0.75 mL/min (if estimated concomitantly with ultrafiltration effectiveness). These fluid transport parameters were independent of small-solute transport characteristics, but proportional to total body water estimated by bioimpedance.ConclusionsBy varying the glucose concentration in 1 of 4 daily exchanges, osmotic conductance, ultrafiltration efficiency, and peritoneal fluid absorption could be estimated in CAPD patients, yielding transport parameter values that were similar to those obtained by other, more sophisticated, methods.


1998 ◽  
Vol 18 (2) ◽  
pp. 193-203 ◽  
Author(s):  
Tao Wang ◽  
Olof Heimbürger ◽  
Hui-Hong Cheng ◽  
Jonas Bergström ◽  
Bengt Lindholm

Objective To study peritoneal fluid and solute transport characteristics using different polyglucose solutions with and without the addition of glucose. Design Thirty-one rats were divided into three groups. A 4-hour dwell study with frequent dialysate and blood samples was performed in each rat using 25 mL of 7.5% polyglucose solution (PG, n = 11),7.5% polyglucose + 0.35% glucose solution (PG1, n = 12), or 3.75% polyglucose + 1.93% glucose solution (PG2, n = 8). Radiolabeled human albumin (RISA) was added to the solutions as an intraperitoneal volume (IPV) marker. In addition, polyglucose degradation was evaluated ex vivo over 24 hours. Experimental Animals Thirty-one male Sprague Dawley rats (300 g) were used. Main Outcome Measures Fluid and solute (glucose, urea, sodium, potassium, and total protein) transport characteristics as well as changes in dialysate osmolality were evaluated. Results The IPV was higher in the PG1 and PG2 groups than in the PG group during the first 2 hours of the dwell. The IPV, in fact, decreased during the first hour of the dwell in the PG group. However, the net ultrafiltration at 4 hours tended to be lower in the PG2 (3.2 ± 1.5 mL) group compared to the PG (5.1 ± 2.3 mL) and the PG1 groups (5.2 ± 2.1 mL) (p = 0.07), and no significant difference was found between the PG and PG1 groups. Adding glucose to the PG solution increased the RISA elimination rate (KE, representing the fluid absorption rate from the peritoneal cavity): 25.5 ± 8.2, 37.5 ± 12.2, and 42.5 ± 8.9 μL/ min for the PG, PG1, and the PG2 group, respectively, p < 0.01. Dialysate osmolality (Dos) increased with the dwell time in the PG and PG1 groups but decreased in the PG2 group. The increase in Dos was partially due to the degradation of glucose polymer, which was supported by the marked increase in osmolality over 24 hours of incubation of PG solution with peritoneal fluid, ex vivo. The diffusive mass transport coefficient for the investigated solutes did not differ among the three groups (except for glucose, which was significantly lower in the PG group). The sieving coefficient for sodium was significantly higher in the PG group compared to the PG1 group (p < 0.05). Conclusion Our results suggest that, although there was an initial decrease in the intraperitoneal dialysate volume, significant amounts of fluid can be removed by polyglucose solution during a single 4-hour dwell in rats, despite the low osmolality of the solution. The positive fluid removal induced by the PG solution is partially due to the lower fluid absorption rate associated with this solution and may, to some extent, also be due to the degradation of glucose polymer within the peritoneal cavity, resulting in increased dialysate osmolality. The addition of glucose to the polyglucose solution does not seem to improve ultrafiltration in a 4-hour dwell in the rat model. However, the peritoneal fluid absorption rate may be increased, and peritoneal transport of glucose and sodium may be altered, by adding glucose to the polyglucose solution.


2004 ◽  
Vol 24 (3) ◽  
pp. 240-251 ◽  
Author(s):  
Danuta Sobiecka ◽  
Jacek Waniewski ◽  
Andrzej Weryński ◽  
Bengt Lindholm

Background Continuous ambulatory peritoneal dialysis (CAPD) patients with high peritoneal solute transport rate often have inadequate peritoneal fluid transport. It is not known whether this inadequate fluid transport is due solely to a too rapid fall of osmotic pressure, or if the decreased effectiveness of fluid transport is also a contributing factor. Objective To analyze fluid transport parameters and the effectiveness of dialysis fluid osmotic pressure in the induction of fluid flow in CAPD patients with different small solute transport rates. Patients 44 CAPD patients were placed in low ( n = 6), low-average ( n = 13), high-average ( n = 19), and high ( n = 6) transport groups according to a modified peritoneal equilibration test (PET). Methods The study involved a 6-hour peritoneal dialysis dwell with 2 L 3.86% glucose dialysis fluid for each patient. Radioisotopically labeled serum albumin was added as a volume marker. The fluid transport parameters (osmotic conductance and fluid absorption rate) were estimated using three mathematical models of fluid transport: ( 1 ) Pyle model (model P), which describes ultrafiltration rate as an exponential function of time; ( 2 ) model OS, which is based on the linear relationship of ultrafiltration rate and overall osmolality gradient between dialysis fluid and blood; and ( 3 ) model G, which is based on the linear relationship between ultrafiltration rate and glucose concentration gradient between dialysis fluid and blood. Diffusive mass transport coefficients (KBD) for glucose, urea, creatinine, potassium, and sodium were estimated using the modified Babb–Randerson–Farrell model. Results The high transport group had significantly lower dialysate volume and glucose and osmolality gradients between dialysate and blood, but significantly higher KBD for small solutes compared with the other transport groups. Osmotic conductance, fluid absorption rate, and initial ultrafiltration rate did not differ among the transport groups for model OS and model P. Model G yielded unrealistic values of fluid transport parameters that differed from those estimated by models OS and P. The KBD values for small solutes were significantly different among the groups, and did not correlate with fluid transport parameters for model OS. Conclusion The difference in fluid transport between the different transport groups was due only to the differences in the rate of disappearance of the overall osmotic pressure of the dialysate, which was a combined result of the transport rate of glucose and other small solutes. Although the glucose gradient is the major factor influencing ultrafiltration rate, other solutes, such as urea, are also of importance. The counteractive effect of plasma small solutes on transcapillary ultrafiltration was found to be especially notable in low transport patients. Thus, glucose gradient alone should not be considered the only force that shapes the ultrafiltration profile during peritoneal dialysis. We did not find any correlations between diffusive mass transport coefficients for small solutes and fluid transport parameters such as osmotic conductance or fluid and volume marker absorption. We may thus conclude that the pathway(s) for fluid transport appears to be partly independent from the pathway(s) for small solute transport, which supports the hypothesis of different pore types for fluid and solute transport.


2008 ◽  
Vol 28 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Jacek Waniewski ◽  
Malgorzata Debowska ◽  
Bengt Lindholm

Objective The three-pore model of peritoneal transport is used extensively for modeling peritoneal fluid and solute transport, but the currently used versions include certain modifications of the transport parameters that have not been validated quantitatively versus detailed data on fluid and solute kinetics. The aim of this study was to evaluate different versions of the three-pore model. Method Detailed clinical peritoneal fluid and solute transport data were obtained from 40 peritoneal dwell studies in clinically stable continuous ambulatory peritoneal dialysis patients in whom the dialysate volume was measured using a macromolecular volume marker (RISA). Results Using a new version of the three-pore model with several adjusted transport parameters, good agreement between the measured and the simulated values of dialysate volume and concentrations of small solutes and RISA (but not of endogenous protein) versus dwell time was obtained; however, the predicted peritoneal absorption for longer than the investigated dwell time would be too high. Conclusion The three-pore model, with some adjustments proposed in this study, may be used for detailed description of peritoneal transport kinetics, but it should be pointed out that, even after these adjustments, it still does not provide the correct description of peritoneal fluid absorption and transport of macromolecules.


2017 ◽  
Vol 40 (11) ◽  
pp. 595-601 ◽  
Author(s):  
Jacek Waniewski ◽  
Stefan Antosiewicz ◽  
Daniel Baczynski ◽  
Jan Poleszczuk ◽  
Mauro Pietribiasi ◽  
...  

Background Sequential peritoneal equilibration test (sPET) is based on the consecutive performance of the peritoneal equilibration test (PET, 4-hour, glucose 2.27%) and the mini-PET (1-hour, glucose 3.86%), and the estimation of peritoneal transport parameters with the 2-pore model. It enables the assessment of the functional transport barrier for fluid and small solutes. The objective of this study was to check whether the estimated model parameters can serve as better and earlier indicators of the changes in the peritoneal transport characteristics than directly measured transport indices that depend on several transport processes. Methods 17 patients were examined using sPET twice with the interval of about 8 months (230 ± 60 days). Results There was no difference between the observational parameters measured in the 2 examinations. The indices for solute transport, but not net UF, were well correlated between the examinations. Among the estimated parameters, a significant decrease between the 2 examinations was found only for hydraulic permeability LpS, and osmotic conductance for glucose, whereas the other parameters remained unchanged. These fluid transport parameters did not correlate with D/P for creatinine, although the decrease in LpS values between the examinations was observed mostly for patients with low D/P for creatinine. Conclusions We conclude that changes in fluid transport parameters, hydraulic permeability and osmotic conductance for glucose, as assessed by the pore model, may precede the changes in small solute transport. The systematic assessment of fluid transport status needs specific clinical and mathematical tools beside the standard PET tests.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Jacek Waniewski ◽  
Stefan Antosiewicz ◽  
Daniel Baczynski ◽  
Jan Poleszczuk ◽  
Mauro Pietribiasi ◽  
...  

During peritoneal dialysis (PD), the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21–87) years; median time on PD 19 (3–100) months) underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS), fraction of ultrasmall pores (αu), osmotic conductance for glucose (OCG), and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters). Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage,αuwas higher. Thus, fluid transport parameters—rather than solute transport parameters—are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane.


2007 ◽  
Vol 27 (5) ◽  
pp. 575-579 ◽  
Author(s):  
Xing-wei Zhe ◽  
Xin-kui Tian ◽  
Lei Cheng ◽  
Tao Wang

Background Peritoneal resting has been used to restore peritoneal ultrafiltration capacity in peritoneal dialysis patients. Therefore, in the present study, we made a detailed investigation on the effects of peritoneal resting on peritoneal fluid transport characteristics in patients on continuous ambulatory peritoneal dialysis (CAPD). Methods A temporary transfer to daytime ambulatory peritoneal dialysis with a nocturnal “empty belly” was applied to let the peritoneal membrane rest overnight in patients with poor ultrafiltration capacity. All included patients were asked to record appropriately their dialysis exchanges for the assessment of peritoneal fluid transport characteristics, which were evaluated before and after peritoneal resting. Results Seven CAPD patients were included in the present study. There was a significant improvement in peritoneal ultrafiltration capacity as assessed by ultrafiltration volume per gram of glucose load. Patients’ daily glucose exposure and dialysate-to-plasma ratio of creatinine were significantly decreased after peritoneal resting. The peritoneal fluid absorption rate was also significantly decreased after peritoneal resting: 1.011 ± 0.4484 versus 0.625 ± 0.3833 mL/minute. Conclusion The present study suggests that peritoneal resting can improve CAPD patients’ ultrafiltration capacity and decrease the use of hypertonic dialysis solution. The improved ultrafiltration capacity by peritoneal resting was due to decreased membrane solute transport rate and decreased peritoneal fluid absorption rate.


1997 ◽  
Vol 129 (1) ◽  
pp. 99-105 ◽  
Author(s):  
D. E. DALLEY ◽  
P. ISHERWOOD ◽  
A. R. SYKES ◽  
A. B. ROBSON

Sixteen 2-year old female sheep were fitted with ruminal and duodenal cannulae at Johnstone Memorial Laboratory, Lincoln University during 1989–90. They were offered, at 2 hourly intervals, a pelleted concentrate diet (900 g/day) and chaffed lucerne hay (100 g/day). In a split-plot experiment they were infused, intraruminally and at four rates, with potassium (providing 16, 26, 36 or 46 g K/kg food DM/day) and magnesium (providing 1·3, 1·8, 2·3 or 3·1 g Mg/kg food DM/day) within a Latin square design and with the liquid and solid phase markers 51chromium EDTA and 141cerium chloride. Net absorption of Mg before and after the duodenum was estimated from dietary intake, duodenal flow and urinary and faecal excretion of Mg.Increasing K intake resulted in a decline in net absorption of Mg from the entire digestive tract, supporting data in the literature. Increasing K intake from 16 to 46 g/kg DM decreased urinary Mg excretion by between 0·14 and 0·30 g/day, the extent of which was independent of the level of Mg intake. At high K intake Mg absorption from the rumen was reduced, the amount absorbed ranging from 0·07 g Mg/day at intakes of 1·3 g Mg/day and 46 g K/kg DM/day to 0·66 g Mg/day at intakes of 3·1 g Mg/day and 16 g K/kg DM/day. However, at high K intake, and when Mg absorption from the rumen was reduced, net Mg absorption from sites distal to the rumen was increased to an extent which suggested compensatory absorption. Increase in K intake was associated with a consistent reduction in plasma Mg concentration which was independent of Mg intake. Increases in Mg intake resulted in increases in Mg absorption and plasma Mg concentration at all rates of K intake in direct proportion to rate of intake. The reduction in Mg absorption from the rumen at high K intake was associated with an increase (0·3 units) in pH of rumen digesta.


PEDIATRICS ◽  
1951 ◽  
Vol 7 (3) ◽  
pp. 408-414
Author(s):  
KATHARINE HAIN

A total of 351 circulating eosinophil counts were done on 75 children. The range of circulating eosinophils for 18 normal children was 109 to 359. In 12 patients with nonfebrile miscellaneous diseases the circulating eosinophil counts ranged from 84 to 599, and in three patients with mild febrile illnesses, from 170 to 341. A possible explanation for the fact that these counts fell within the normal range was discussed. In 29 patients with acute febrile illnesses the initial circulating eosinophil counts ranged from 0 to 97. Serial counts during convalescence on three of these patients are presented and the prognostic significance discussed. In 10 patients with various allergic manifestations there was a range of 393 to 2665. Serial counts on one case of acute atopic eczema treated with ACTH are presented. Serial counts on one patient before and after laparotomy are presented. Results of the "ACTH test," the "epinephrine test" and the "insulin test" on a group of children with miscellaneous diseases are presented.


2015 ◽  
Vol 11 (1) ◽  
pp. 17-21
Author(s):  
Y.R. de Souza ◽  
F.B. Feitosa

This study aimed to investigate the gender difference in the manifestation of physical stress in a strenuous military training on Amazon jungle, using alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) markers, measured before and after an adaptation to jungle training. The sample consisted of 49 military volunteers, 35 male and 14 female, recently moved to the Amazon region. All plasma levels rose after the training. Serum ALT (male and female) and AST (male and female), although borderline, remained within normal limits. Already plasma levels of CK (both male and female) and LDH (male and female) largely exceeded the normal range. The average of all markers listed in female gender remained below the levels of the male gender. However, significant differences in biomarkers ALT, AST and CK between genders were found. The study points out that, in a jungle environment, biometric markers ALT, AST, CK and LDH are efficient for monitoring chronic physical stress in both genders, when used in combination. The influence of the weather on the occurrence of physical stress in unacclimated people of both genders, and the lower responses in the levels of ALT, AST, LDH and CK in females were discussed basing on the scientific literature.


Sign in / Sign up

Export Citation Format

Share Document