Intelligent Monitoring and Controlling Technology of Water Injection in Ultra-low Permeability Reservoir of Ordos Basin

Author(s):  
Lingzhi Yang ◽  
Jiuzheng Yu ◽  
Meixin Ju ◽  
Bilin Luo ◽  
Zijian Wang ◽  
...  
2012 ◽  
Vol 524-527 ◽  
pp. 1190-1195
Author(s):  
Jian Jun Liu ◽  
Quan Shu Li ◽  
Gui Hong Pei

Channeling flow frequently occurs during the high pressure water injection of low permeability reservoir. The injection process is complex and covers so many parameters of which the contribution to channeling flow is necessarily to be studied. In this paper, numerical simulation is combined with sensitivity analysis method to calculate the significance of the weight of parameters to the channeling flow. First the values of different parameters are produced by using Latin hypercube method; second, by using these parameters, finite element model have been established and simulated, and the quantity of channeling flow has been calculated; then Spearman rank relation is applied to measure the relation of parameters and channeling flow. The results states that, in 10 years continuous injection, the well spacing and injection pressure have significant impact on the channeling flow. This states that during the application of high pressure water injection, the pressure and well spacing should be controlled especially.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 344
Author(s):  
Ping Yue ◽  
Rujie Zhang ◽  
James J. Sheng ◽  
Gaoming Yu ◽  
Feng Liu

As the demands of tight-oil Enhanced Oil Recovery (EOR) and the controlling of anthropogenic carbon emission have become global challenges, Carbon Capture Utilization and Sequestration (CCUS) has been recognized as an effective solution to resolve both needs. However, the influential factors of carbon dioxide (CO2) geological storage in low permeability reservoirs have not been fully studied. Based on core samples from the Huang-3 area of the Ordos Basin, the feasibility and influential factors of geological CO2 sequestration in the Huang-3 area are analyzed through caprock breakthrough tests and a CO2 storage factor experiment. The results indicate that capillary trapping is the key mechanism of the sealing effect by the caprock. With the increase of caprock permeability, the breakthrough pressure and pressure difference decreased rapidly. A good exponential relationship between caprock breakthrough pressure and permeability can be summarized. The minimum breakthrough pressure of CO2 in the caprock of the Huang-3 area is 22 MPa, and the breakthrough pressure gradient is greater than 100 MPa/m. Huang-3 area is suitable for the geological sequestration of CO2, and the risk of CO2 breakthrough in the caprock is small. At the same storage percentage, the recovery factor of crude oil in larger permeability core is higher, and the storage percentage decreases with the increase of recovery factor. It turned out that a low permeability reservoir is easier to store CO2, and the storage percentage of carbon dioxide in the miscible phase is greater than that in the immiscible phase. This study can provide empirical reference for caprock selection and safety evaluation of CO2 geological storage in low permeability reservoirs within Ordos Basin.


2014 ◽  
Vol 487 ◽  
pp. 255-258
Author(s):  
Jin Gang He ◽  
Kao Ping Song ◽  
Jing Yang ◽  
Bao Gang Sun ◽  
Si Chen ◽  
...  

This paper study on the permeability, start-up pressure gradient and stress sensitivity of advance water injection in extra-low permeability reservoir in Fuyu Oil layer of Daqing Oilfield. Experimental results show that the reasonable formation pressure level should be at about 120% in the advance water injection experiment, advanced water injection in the the early stage have higher oil production, the water breakthrough, earlier than synchronous water injection has certain inhibitory effect of water cut rise; Under the premise of advance water injection can overcome the start-up pressure, the lower the level of the reservoir permeability, the higher improve recovery efficiency of the proportion; permeability retention rate increase by about 22% with 5×10-3μm2 core and effectively overcome the stress sensitivity of low permeability reservoir damage; Advanced water injection can overcome stress sensitivity and restoring formation pressure, all that influence the start-up pressure gradient, which significantly reduce the start-up pressure gradient.


2011 ◽  
Vol 361-363 ◽  
pp. 51-54
Author(s):  
Hong Yan Yu ◽  
Hong Qi Li

As the result of its special structural feature and depositional setting, Ordos Basin formed large scale low-permeability reservoir. According to scanning electron microscope, casting sheet image, core observation, physical property analysis and core analysis testing, this paper summarized and analyzed ultra low permeability reservoir microscopic feature of Ordos Basin Baibao area Chang63. Reservoir microscopic feature is controlled by deposition and diagenesis. Deposition decided reservoir lithology, interstitial content and sizes of primary pores. Compaction and cementation of diagenesis destroyed primary pores, but denudation provided high range secondary pores, which improved storage space of the research area.


Sign in / Sign up

Export Citation Format

Share Document