Reconstruction of Mirror Symmetry Hypothesis from a Geometrical Point of View

Author(s):  
Masao Jinzenji
Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 82
Author(s):  
Jean-Marc Girault ◽  
Sébastien Ménigot

Today, the palindromic analysis of biological sequences, based exclusively on the study of “mirror” symmetry properties, is almost unavoidable. However, other types of symmetry, such as those present in friezes, could allow us to analyze binary sequences from another point of view. New tools, such as symmetropy and symmentropy, based on new types of palindromes allow us to discriminate binarized 1/f noise sequences better than Lempel–Ziv complexity. These new palindromes with new types of symmetry also allow for better discrimination of binarized DNA sequences. A relative error of 6% of symmetropy is obtained from the HUMHBB and YEAST1 DNA sequences. A factor of 4 between the slopes obtained from the linear fits of the local symmentropies for the two DNA sequences shows the discriminative capacity of the local symmentropy. Moreover, it is highlighted that a certain number of these new palindromes of sizes greater than 30 bits are more discriminating than those of smaller sizes assimilated to those from an independent and identically distributed random variable.


2010 ◽  
Vol 22 (02) ◽  
pp. 117-192
Author(s):  
IGOR KRIZ

The purpose of this paper is to revisit the theory of perturbative deformations of conformal field theory from a mathematically rigorous, purely worldsheet point of view. We specifically include the case of N = (2,2) conformal field theories. From this point of view, we find certain surprising obstructions, which appear to indicate that contrary to previous findings, not all deformations along marginal fields exist perturbatively. This includes the case of deformation of the Gepner model of the Fermat quintic along certain cc fields. In other cases, including Gepner models of K3-surfaces and the free field theory, our results coincides with known predictions. We give partial interpretation of our results via renormalization and mirror symmetry.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1741
Author(s):  
Christoph Runte ◽  
Dieter Dirksen

Animal bodies in general and faces in particular show mirror symmetry with respect to the median-sagittal plane, with exceptions rarely occurring. Bilateral symmetry to the median sagittal plane of the body also evolved very early. From an evolutionary point of view, it should therefore have fundamental advantages, e.g., more effective locomotion and chewing abilities. On the other hand, the recognition of bilaterally symmetric patterns is an important module in our visual perception. In particular, the recognition of faces with different spatial orientations and their identification is strongly related to the recognition of bilateral symmetry. Maxillofacial surgery and Dentistry affect effective masticatory function and perceived symmetry of the lower third of the face. Both disciplines have the ability to eliminate or mitigate asymmetries with respect to form and function. In our review, we will demonstrate symmetric structures from single teeth to the whole face. We will further describe different approaches to quantify cranial, facial and dental asymmetries by using either landmarks or 3D surface models. Severe facial asymmetries are usually caused by malformations such as hemifacial hyperplasia, injury or other diseases such as Noma or head and neck cancer. This could be an important sociobiological reason for a correlation between asymmetry and perceived disfigurement. The aim of our review is to show how facial symmetry and attractiveness are related and in what way dental and facial structures and the symmetry of their shape and color influence aesthetic perception. We will further demonstrate how modern technology can be used to improve symmetry in facial prostheses and maxillofacial surgery.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


1984 ◽  
Vol 75 ◽  
pp. 331-337
Author(s):  
Richard Greenberg

ABSTRACTThe mechanism by which a shepherd satellite exerts a confining torque on a ring is considered from the point of view of a single ring particle. It is still not clear how one might most meaningfully include damping effects and other collisional processes into this type of approach to the problem.


Author(s):  
A. Baronnet ◽  
M. Amouric

The origin of mica polytypes has long been a challenging problem for crystal- lographers, mineralogists and petrologists. From the petrological point of view, interest in this field arose from the potential use of layer stacking data to furnish further informations about equilibrium and/or kinetic conditions prevailing during the crystallization of the widespread mica-bearing rocks. From the compilation of previous experimental works dealing with the occurrence domains of the various mica "polymorphs" (1Mr, 1M, 2M1, 2M2 and 3T) within water-pressure vs temperature fields, it became clear that most of these modifications should be considered as metastable for a fixed mica species. Furthermore, the natural occurrence of long-period (or complex) polytypes could not be accounted for by phase considerations. This highlighted the need of a more detailed kinetic approach of the problem and, in particular, of the role growth mechanisms of basal faces could play in this crystallographic phenomenon.


Author(s):  
T. E. Mitchell ◽  
M. R. Pascucci ◽  
R. A. Youngman

1. Introduction. Studies of radiation damage in ceramics are of interest not only from a fundamental point of view but also because it is important to understand the behavior of ceramics in various practical radiation enyironments- fission and fusion reactors, nuclear waste storage media, ion-implantation devices, outer space, etc. A great deal of work has been done on the spectroscopy of point defects and small defect clusters in ceramics, but relatively little has been performed on defect agglomeration using transmission electron microscopy (TEM) in the same kind of detail that has been so successful in metals. This article will assess our present understanding of radiation damage in ceramics with illustrations using results obtained from the authors' work.


Author(s):  
C. Wiencke ◽  
A. Lauchli

Osmoregulatory mechanisms in algae were investigated mainly from a physiological point of view (KAUSS 1977, HELLEBUST 1976). In Porphyra two osmotic agents, i. e. floridoside/isofloridoside (KAUSS 1968) and certain ions, such as K+ and Na+(EPPLEY et al. 1960) are considered for osmotic balance. Accumulations of ions (particularly Na+) in the cytoplasm during osmotic adaptation is improbable, because the activity of enzymes is generally inhibited by high ionic concentrations (FLOWERS et al. 1977).The cellular organization of Porphyra was studied with special emphasis on the development of the vacuolar system under different hyperosmotic conditions. Porphyra was cultivated at various strengths of the culture medium ASP 12 (PROVASOLI 1961) ranging from normal to 6 times concentrated (6x) culture medium. Por electron microscopy freeze fracturing was used (specimens fixed in 2% glutaraldehyde and incubated in 30% glycerol, preparation in a BALZERS BA 360 M apparatus), because chemical fixation gave poor results.


Author(s):  
N.V. Belov ◽  
U.I. Papiashwili ◽  
B.E. Yudovich

It has been almost universally adopted that dissolution of solids proceeds with development of uniform, continuous frontiers of reaction.However this point of view is doubtful / 1 /. E.g. we have proved the active role of the block (grain) boundaries in the main phases of cement, these boundaries being the areas of hydrate phases' nucleation / 2 /. It has brought to the supposition that the dissolution frontier of cement particles in water is discrete. It seems also probable that the dissolution proceeds through the channels, which serve both for the liquid phase movement and for the drainage of the incongruant solution products. These channels can be appeared along the block boundaries.In order to demonsrate it, we have offered the method of phase-contrast impregnation of the hardened cement paste with the solution of methyl metacrylahe and benzoyl peroxide. The viscosity of this solution is equal to that of water.


Sign in / Sign up

Export Citation Format

Share Document