Application of Microbial-Induced Carbonate Precipitation for Soil Improvement via Ureolysis

Author(s):  
Siddhartha Mukherjee ◽  
R. B. Sahu ◽  
Joydeep Mukherjee ◽  
Suchandra Sadhu
2021 ◽  
pp. 106374
Author(s):  
Hao Meng ◽  
Shuang Shu ◽  
Yufeng Gao ◽  
Boyang Yan ◽  
Jia He

2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Jamie Haystead ◽  
Martyn Dade-Robertson ◽  
Thora Arnardottir ◽  
Beate Christgen ◽  
Meng Zhang

Weak and unstable soils can limit the building of new infrastructure. Current soil strengthening techniques such as chemical grouting have detrimental effects on the environment from greenhouse gas production, soil pH modification and groundwater contamination. Microbial-induced calcium carbonate precipitation (MICCP) is a technique that utilises the ability of bacteria to precipitate calcium carbonate, which can be used for a variety of applications including binding adjacent soil particles and filling the pore spaces of soils to increase their mechanical properties. A commonly used bacterium is Sporosarcina pasteurii. A range of factors influences MICCP which presents challenges with process optimisation. Some studies have made use of computational models to predict biocementation at a larger scale, however aspects of models are based on assumption of conditions instead of experimental data. An aim of this project is to investigate urease activity in S. pasteurii by comparing different growth media, growth stages, pH and temperatures. Ureolysis kinetics of S. pasteurii will be investigated at different urea and calcium chloride concentrations in liquid media. Finally, the biocementation of S. pasteurii in sand syringe setups will also be investigated to compare the effects of changing influencing factors such as growth stage and cell concentration of S. pasteurii, sand particle size, cementation media concentration, duration between cementation media applications and overall number of cementation treatments. Experimental work will be particularly focused towards gaps in the experimental data used in computational models, to help improve these models and bring MICCP biocementation closer to commercial use.


2020 ◽  
Author(s):  
Md Al Imran ◽  
Kazunori Nakashima ◽  
Niki Evelpidou ◽  
Satoru Kawasaki

<p>Considering the global climate change and the ensuing sea level rise, the subsequent acceleration of coastal erosion is evident. Phenomena of coastal erosion, coastal flooding and shoreline retreat are expected to show a significant increase in frequency and intensity, in global level. The effects of coastal erosion are worsened by storms, and the reduction of sediment supply associated with global warming and anthropogenic modification of rivers and coastlines. As a countermeasure to coastal erosion, this work focuses on the development of coastal artificial in-situ rocks. We developed a new method that encompasses microbes and the related mechanism is called “Microbial Induced Carbonate Precipitation” (MICP). We successfully isolated three microorganisms, Micrococcus sp., Pseudoalteromonas sp., and Virgibacillus sp., from the selected area, and investigated their effectiveness in order to make a solidified sand sample. The precipitated bounding material has also been confirmed as calcite by XRD and XRF analysis. We successfully demonstrated that all of these bacterial species are very sensitive with certain environmental parameters, such as temperature, pH, culture type, culture duration, etc. In laboratory scale, we successfully obtained solidified sand by syringe (d = 2.3 cm, h = 7.1 cm) solidification method bearing UCS (Unconfined Compressive Strength) up to 1.8 MPa using 0.5 M CaCl<sub>2</sub> and urea as cementation solution at 30°C. In addition, we propose a new sustainable approach for field implementation of this method through a combination of geotube and MICP mechanism, which will contribute to coastal erosion protection. The proposed approach is more economic, energy-saving, eco-friendly, and sustainable for bio-mediated soil improvement.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yu Gao ◽  
De Yao ◽  
Cuiyan Wang ◽  
Yanxing Wang ◽  
Chi Li

Many soil microorganisms in nature induce carbonate precipitation, which is used in soil improvement to reduce the pollution of soil environment by traditional chemical improvement. With the goal of expanding the geotechnical applications of biomineralizing bacteria, this study investigated the characteristics of a newly identified strain of soil bacteria, including its mineralization ability, its effect on Aeolian sandy soil, and biomineralization crust effect in the desert field test. The autogenous mineralized strain was isolated and purified from desert Aeolian sandy soil, and the strain was identified as Staphylococcus using 16SrRNA sequence homology. It is a kind of mineralized bacteria seldom used in geotechnical engineering at present, and it was found to have good mineralization ability; the living conditions of Staphylococcus were optimized. Under the determined amount of bacteria liquid, the amount of calcium carbonate precipitation after the bacteria liquid reacted with different volumes of calcium source solution was studied to determine the appropriate ratio of bacteria liquid and calcium source solution and the molar amount of calcium source solution. This study also investigated the effect of mineralization on the strength of sand and determined the particle size range of sand and suitable bacteria concentration that Staphylococcus can effectively stabilize. Field test results verified desert autogenous Staphylococcus had a good mineralization effect on sand. It was suitable for Aeolian sandy soil crust and improvement. In this paper, the autogenous strain was applied to the surface of the desert for the first time to form an in situ microbial mineralization crust. The research results can provide a theoretical basis for the better application of autogenous strain in the desert.


Sign in / Sign up

Export Citation Format

Share Document