The Framework of the Integration of Carbon Footprint and Blockchain: Using Blockchain as a Carbon Emission Management Tool

Author(s):  
Kun-Hsing Liu ◽  
Shih-Fang Chang ◽  
Wun-Hui Huang ◽  
I-Ching Lu
2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
T Batool ◽  
A Neven ◽  
Y Vanrompay ◽  
M Adnan ◽  
P Dendale

Abstract Funding Acknowledgements Type of funding sources: Other. Main funding source(s): Special Research Fund (BOF), Hasselt University Introduction The transportation sector is one of the major sectors influencing climate change, contributing around 16% of total Greenhouse gases (GHG) emissions. Aviation contributes to 12% of the transport related emissions. Among other climate change impacts, elevated heat exposure is associated with increased cardiac events and exposure to air pollution caused by GHG emissions has also well-known association with increased cardiovascular related morbidity and mortality. The global temperature rise should be restricted to less than 2 °C which requires keeping carbon emission (CO2) less than 2900 billion tonnes by the end of the 21st century. Assuming air travel a major contributing source to GHG, this study aims to raise the awareness about potential carbon emissions reduction due to air travel of international events like a scientific conference. Purpose Due to the global pandemic of COVID-19, the Preventive cardiology conference 2020 which was planned to be held at Malaga Spain, instead was held in virtual online way. This study aims to calculate the contribution of reduced CO2  emissions in tons due to ESC preventive cardiology conference 2020, which was then held online and air travel of the registered participants was avoided. Methods Anonymized participant registration information was used to determine the country and city of the 949 registered participants of the Preventive Cardiology conference 2020. It is assumed that participants would have travelled from the closest airports from their reported city locations to Malaga airport, Spain. At first, the closest city airports were determined using Google maps and flights information, then the flight emissions (direct and indirect CO2-equivalent emissions) per passenger for the given flight distances were calculated. The CO2 emissions (tons) were calculated for round trips in economy class from the participants of 68 nationalities (excluding 60 participants from Spain as they are assumed to take other modes of transport than airplane). Results In total, 1156.51 tons of CO2  emissions were saved by turning the physical conference into a virtual event. This emission amount is equivalent to the annual CO2 production of 108 people living in high-income countries. Conclusion The pandemic situation has forced us to rethink the necessity of trips by air and has shown us the feasibility of digitally organized events. The information from this study can add to the awareness about reduced amount of carbon emission due to air travel by organizing events in a virtual way when possible. Apart from only digitally organized events there are others options to reduce the carbon footprint of conferences such as limiting the number of physical attendees, encouraging the use of relatively sustainable transport modes for participants from nearby countries (e.g. international trains and use of active transport modes at conference venue etc.) and including CO2 emission offsetting costs.


2014 ◽  
Vol 608 ◽  
pp. 62-67
Author(s):  
Karin Kandananond

Although the manufacturing businesses have played an important role in generating the highest GDP for Thailand, they also emit more greenhouse gas (GHG) than other sectors. Due to the cap and trade scheme by European Union (EU), the carbon footprint is the GHG emitted by products, organization or persons and it has to be tracked and recorded. Since the ceramic production process also has a major contribution on the emission, its carbon footprint is a piece of product information which cannot be ignored. In this research, the carbon footprint for the whole life cycle of a local ceramic product was recorded and calculated. It is interesting to note that the resource extraction stage has contributed to the highest emission followed by the product use, manufacturing, disposal and distribution. The results from this research are useful for local ceramic manufacturers who want to export their products to the EU countries and it is also important for the customers who are concerned about the environment.


2013 ◽  
Vol 807-809 ◽  
pp. 1052-1058
Author(s):  
Zhe Wang ◽  
Yu Li ◽  
Ze Hong Li ◽  
Liang Yuan ◽  
Ji Zheng

Climate change caused by increasing carbon emission is harmful to global environment and human society. Developing low-carbon economy through reasonable industries planning and effective utilization of resources is a significant path to achieve the aim of energy saving and carbon emission reduction. The word carbon footprint means carbon emission caused by a certain industry, activity, product or individual, and the issue of carbon emission should be linked with economic activity to analyze, while input-output model is a reliable method to contact two factors. Based on input-output model, this paper calculated direct or indirect carbon emission which is demanded for the products of final consumption in Beijing, and analyzed carbon footprint of each industrial sector in 2005, 2007 and 2010 by operating Leontief matrix. The result demonstrates annual carbon emission of Beijing increased from 10482.68×104ton to 17407.28×104ton during 2000-2011. Manufacturing industry, excavating industry, transportation and postal industry exert supreme impact on carbon emission in Beijing. Carbon footprint of transportation and postal industry and other tertiary industries such as information, business, service, education, science researching industries in 2010 had an obvious rise compare with the data of 2005 and 2007.


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 51 ◽  
Author(s):  
Lei Gu ◽  
Yufeng Zhou ◽  
Tingting Mei ◽  
Guomo Zhou ◽  
Lin Xu

Bamboo forest is characterized by large carbon sequestration capability and it plays an important role in mitigating climate change and global carbon cycling. Previous studies have mostly focused on carbon cycling and carbon stocks in bamboo forest ecosystems, whereas the carbon footprints of bamboo products have not received attention. China is the largest exporting country of bamboo flooring in the world. Estimating the carbon footprint of bamboo flooring is of essential importance for the involved enterprises and consumers to evaluate their own carbon footprints. In this study, we investigated the production processes of bamboo scrimber flooring for outdoor use, a typical bamboo flooring in China. Based on business-to-business (B2B) evaluation method, we assessed CO2 emission and carbon transfer ratio in each step of the production process, including transporting bamboo culms and producing and packing the products. We found that to produce 1 m3 of bamboo scrimber flooring, direct carbon emissions from fossil fuels during transporting raw materials/semi-finished products, from power consumptions during production, and indirect emissions from applying additives were 30.94 kg CO2 eq, 143.37 kg CO2 eq, and 78.34 kg CO2 eq, respectively. After subtracting the 267.54 kg CO2 eq carbon stocks in the product from the 252.65 kg CO2 eq carbon emissions derived within the defined boundary, we found that the carbon footprint of 1 m3 bamboo scrimber flooring was −14.89 kg CO2 eq. Our results indicated that the bamboo scrimber flooring is a negative carbon-emission product. Finally, we discussed factors that influence the carbon footprint of the bamboo flooring and gave suggestions on carbon emission reduction during production processes. This study provided a scientific basis for estimating carbon stocks and carbon footprints of bamboo products and further expanded knowledge on carbon cycling and lifespan of carbon in the bamboo forest ecosystem.


2012 ◽  
Vol 200 ◽  
pp. 524-527
Author(s):  
He Nian ◽  
Xiao Min Wang ◽  
Xiao Juan Shi

Based on the energy conservation, calculate the carbon footprint of single wall corrugated boards. By calculating the heat balance of each unit in the corrugated board production line, the steam quantity of each unit was calculated and translated into direct carbon emissions; indirect carbon emission was calculated by the electric carbon emission factor. Evaluates to: producing quantitative 140/110/170(g/m2) single wall board for 100m2, the direct and indirect emission of CO2 is 25.4kg and 9.4kg.


2021 ◽  
Vol 4 (1) ◽  
pp. 42-49
Author(s):  
Anukram Sharma ◽  
Khem N Poudyal ◽  
Nawraj Bhattarai

Study of carbon footprint is an emerging field which provides statistical analysis about the contribution of an activity on global climate change. Every human activity in daily life is achieved at the expense of those substances which directly or indirectly contribute to global warming. In this era of global communication, humans are habitual to know about the ongoing changes in the world. Newspapers are one of the reliable sources for getting updated about the global information. Paper-based newspapers come at the cost of greenhouse gas emissions. So, this article based upon an analysis of carbon footprint of Nepal’s national daily newspaper provides evaluation of each of the following: carbon emission during the manufacturing of raw materials, carbon emission from fuel consumption during transportation of raw materials, carbon emissions during the printing of newspaper and carbon emission from the fuel consumption during the transportation of printed newspaper. During the study period of 2019 A.D., the result shows that the total carbon emission of Gorkhapatra newspaper was found to be 2308.5 kg CO2e per ton. The upshot of this study provides not only thorough information about carbon emissions but also builds a foundation for calculation of carbon emissions from paper used in various sectors.


2020 ◽  
Vol 5 (13) ◽  
pp. 157
Author(s):  
Rohana Sham ◽  
Razifah Othman ◽  
Ho Hui Yee ◽  
Tan Yi Han

Walking has significantly contributed to a lower carbon emission of a country. With the aspiration of a lesser carbon footprint zone, the initiatives of understanding the current pedestrian system are crucial. Although walking improves green mobility, it is still known as the least preferred mode. Thus, this study aims to improve pedestrian walkways and promote a higher level of usage of pedestrian walkways by analyzing the critical factors contributing to the lower carbon footprint among the urban dwellers. The results will help to improve a lower carbon footprint practice in the metropolitan area.Keywords: Pedestrian,Friendly,Low Carbon,SatisfactioneISSN: 2398-4287 © 2020. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia.DOI: https://doi.org/10.21834/e-bpj.v5i13.1982


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rezuana Islam ◽  
Sajal Chowdhury ◽  
Nusrat Jannat ◽  
Pranjib Paul

PurposeLocal dwellings of Bangladesh have specific environmental characteristics. These dwellings extensively use locally available materials and construction techniques. Therefore, carbon footprint (CF), as a prominent environmental parameter, is greatly affected by construction materials and techniques. Nonetheless, scientific justification is limited to evaluate CF of these dwellings in Bangladesh according to different local construction materials. The main purpose of this study is to evaluate different rural dwellings’ CF for both construction and operational phases toward the development of low carbon society in Bangladesh.Design/methodology/approachFor evaluating CF, literature review and field studies were conducted to specify and categorize cases. An intensive field monitoring and occupant's survey were performed during summer. A widely recognized compliant database and assessment tool “Ecoinvent v3” was used based on International Organization for Standardization (ISO) 14040 and 14044. Quantitative and qualitative data were collected to evaluate constructional and operational stages of carbon emission using hybrid methods formed by process-based and economic input–output life cycle analysis (EIO-LCA) approaches.FindingsThe study indicates that different building materials significantly impact on dwelling's amount of carbon emission according to construction techniques. Brick dwelling's construction stage carbon emission was nearly 3.86 times higher than timber, whereas, 6.75 times higher than mud dwelling. In terms of operational stage, local brick dwelling emits higher carbon compared to others relating to occupants’ lifestyle and activities.Originality/valueThis study will contribute to helping professionals and policy-makers to interpret and evaluate architectural design and construction processes for improving low-carbon dwellings in Bangladesh.


Author(s):  
Kapil Mendiratta ◽  
Subhadeep Bhattacharyya ◽  
Grandhi Venkata Abhinav

With the ever increasing intrusion of humans in the environment, it is imperative that individuals and organizations as a unit contribute to an ecologically sustainable environment. With the awareness about carbon emissions and their long term effects increasing; more and more companies are investing in achieving greener ways of production This chapter aims to study how socially/ environmentally conscious today's corporations are, and what courses of action are being taken towards a greener and carbon neutral society in terms of saving basic equivalents of resources such as paper, water, electricity etc. In this chapter we have conducted a survey to analyze the major sources of carbon emission in corporate offices and discuss how corporations can be engaged in contributing to a greener environment.


Sign in / Sign up

Export Citation Format

Share Document