Study on Treatment of Domestic Wastewater by Modified Bio-Rack System

Author(s):  
S. M. Sathe ◽  
G. R. Munavalli
Keyword(s):  
2014 ◽  
Vol 13 (1) ◽  
pp. 145-152 ◽  
Author(s):  
Alireza Valipour ◽  
Seyed Masoud Taghvaei ◽  
Venkatraman Kalyan Raman ◽  
Gagik Badalians Gholikandi ◽  
Shervin Jamshidi ◽  
...  

1991 ◽  
Vol 23 (4-6) ◽  
pp. 973-980 ◽  
Author(s):  
M. Takahashi ◽  
S. Kyosai

A Multi-stage Reversing flow Bioreactor (MRB) was developed by the Public Works Research Institute in 1986. It utilizes the symbiotic interaction between anaerobic bacteria (sulfate reducing bacteria) and microaerobic bacteria (Beggiatoa=filamentous sulfur oxidizing bacteria) for self-granulated pellet formation. A MRB Pilot plant for domestic wastewater treatment (design capacity was 225 m3/day) was constructed in 1988. After several modifications of the initial design, stable pellet formation and high performance were achieved. This paper describes the results of the pilot plant operation.


1991 ◽  
Vol 23 (4-6) ◽  
pp. 641-650 ◽  
Author(s):  
S. Haruta ◽  
T. Takahashi ◽  
T. Nishiguchi

The authors have developed what we call the submerged iron contactor process as a simple and inexpensive phosphorus removal method for small-scale plants disposing of domestic wastewater and household wastewater treatment tanks. In this method iron contactors are submerged in biological treatment tanks, where phosphate anions in wastewater are combined with iron cations produced through corrosion of the contactors, and the compound thus produced is precipitated and removed together with biological sludge. In these studies, laboratory experiments were made on the contact aeration process combined with the above-mentioned method, and the following findings were obtained. (1) It is desirable to treat wastewater by making use of corrosion by sulfate-reducing bacteria instead of corrosion by oxygen dissolved in wastewater, to conduct a stable phosphorus removal by this combined method. (2) The corrosion rate of iron contactors is affected by the volumetric loading of BOD in the tanks where they are submerged. (3) Assuming that an iron contactor continues to suffer corrosion evenly all over the surface when our combined method is applied, it is estimated that the corrosion rate is about 1mm or less in 30 years.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 291-298
Author(s):  
Frits A. Fastenau ◽  
Jaap H. J. M. van der Graaf ◽  
Gerard Martijnse

More than 95 % of the total housing stock in the Netherlands is connected to central sewerage systems and in most cases the wastewater is treated biologically. As connection to central sewerage systems has reached its economic limits, interest in on-site treatment of the domestic wastewater of the remaining premises is increasing. A large scale research programme into on-site wastewater treatment up to population equivalents of 200 persons has therefore been initiated by the Dutch Ministry of Housing, Physical Planning and Environment. Intensive field-research work did establish that the technological features of most on-site biological treatment systems were satisfactory. A large scale implementation of these systems is however obstructed in different extents by problems of an organisational, financial and/or juridical nature and management difficulties. At present research is carried out to identify these bottlenecks and to analyse possible solutions. Some preliminary results are given which involve the following ‘bottlenecks':-legislation: absence of co-ordination and absence of a definition of ‘surface water';-absence of subsidies;-ownership: divisions in task-setting of Municipalities and Waterboards; divisions involved with cost-sharing;-inspection; operational control and maintenance; organisation of management;-discharge permits;-pollution levy;-sludge disposal. Final decisions and practical elaboration of policies towards on-site treatment will have to be formulated in a broad discussion with all the authorities and interest groups involved.


1991 ◽  
Vol 24 (5) ◽  
pp. 233-240 ◽  
Author(s):  
Nik Fuaad Nik Abllah ◽  
Aik Heng Lee

A laboratory study was conducted to determine the feasibility of batch activated sludge reactor for treating pineapple wastewater and to examine the effects of bioaugmentation on treatment performance. The experimental set-up consists of eleven batch reactors. Activated sludge obtained from a wastewater treatment plant treating domestic wastewater was used as seed for the reactors. Synthetic pineapple wastewater was used as feed for the reactors. The eleven reactors were arranged to evaluate the total organic removal, nitrification, and sludge production by bioaugmentation process. Three major factors considered were influent organic loading, ammonia-nitrogen, and dosage of bacterial-culture-product addition. Removal of TOG (total organic carbon), sludge production in terms of SS(suspended solids), and ammonia-nitrogen removal variation are used as evaluation parameters. The TOC removal efficiency after the end of a 48 hour reactor run, for influent TOC of 350.14 to 363.30 mg/l, and 145.92 to 169.66 mg/l, was 94.41 to 95.89%, and 93.72 to 94.73% respectively. Higher organic removal was observed in the bioaugmented reactors with higher organic loading. The better organic removal efficiency in the bioaugmented reactors was probably due to activities of bacteria added. The test results also indicated that sludge yield was enhanced by the bacteria additive and high bacteria dosage produced less sludge. Bioaugmentation was observed to be a suitable alternative for enhancing the biological treatment of pineapple wastewater.


1995 ◽  
Vol 32 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Seni Karnchanawong ◽  
Jaras Sanjitt

Two pilot-scale studies were comparatively conducted under tropical conditions during December 1992 to September 1993. One study involved facultative ponds(FP) and the others water spinach ponds(SP). Four rectangular concrete ponds, 0.8 m × 2.4 m × 1.1 m (width × length × depth), were employed to treat the Chiang Mai University campus wastewater. Water spinach (Ipomoea aquatica) was planted in two of the ponds. The influent characteristics noted showed a low organic content, i.e. BOD 25.4-29.9 mg/l, with BOD:N ratio around 1:1. The investigations were conducted using the following hydraulic retention times (HRT): 1.6, 2, 2.7, 4, 8 and 16 d. The results showed that the BOD, COD and SS mass removal rates increased as the mass loading rates increased and the SP was significantly more effective in reducing the organic content than the FP. No relationship was found between TN mass removal and the loading rates. However, the TP mass removal rates in the SP and the FP were rather low and were considered to be insignificant. It was observed that SS accumulated in the water spinach root systems which tended to act as a strainer. This process led to plant growth inhibition and finally die-off. The average water spinach growth rates varied from 37 to 107 g wet wt./(m2.d) and no relationship was established between the growth rates and the HRT.


1998 ◽  
Vol 38 (8-9) ◽  
pp. 213-221 ◽  
Author(s):  
Mohamed F. Hamoda ◽  
Ibrahim A. Al-Ghusain

Performance data from a pilot-plant employing the four-stage aerated submerged fixed film (ASFF) process treating domestic wastewater were analyzed to examine the organic removal rates. The process has shown high BOD removal efficiencies (> 90%) over a wide range of hydraulic loading rates (0.04 to 0.68 m3/m2·d). It could also cope with high hydraulic and organic loadings with minimal loss in efficiency due to the large amount of immobilized biomass attained. The organic (BOD and COD) removal rate was influenced by the hydraulic loadings applied, but organic removal rates of up to 104 kg BOD/ m2·d were obtained at a hydraulic loading rate of 0.68 m3/m2·d. A Semi-empirical model for the bio-oxidation of organics in the ASFF process has been formulated and rate constants were calculated based on statistical analysis of pilot-plant data. The relationships obtained are very useful for analyzing the design and performance of the ASFF process and a variety of attached growth processes.


Sign in / Sign up

Export Citation Format

Share Document