A Graph Representation Learning Algorithm Based on Attention Mechanism and Node Similarity

Author(s):  
Kun Guo ◽  
Deqin Wang ◽  
Jiangsheng Huang ◽  
Yuzhong Chen ◽  
Zhihao Zhu ◽  
...  
2019 ◽  
Vol 9 (20) ◽  
pp. 4473 ◽  
Author(s):  
Yiran Hao ◽  
Yiqiang Sheng ◽  
Jinlin Wang

Most existing studies on an unsupervised intrusion detection system (IDS) preprocessing ignore the relationship among packets. According to the homophily hypothesis, the local proximity structure in the similarity relational graph has similar embedding after preprocessing. To improve the performance of IDS by building a relationship among packets, we propose a packet2vec learning algorithm that extracts accurate local proximity features based on graph representation by adding penalty to node2vec. In this algorithm, we construct a relational graph G’ by using each packet as a node, calculate the cosine similarity between packets as edges, and then explore the low-order proximity of each packet via the penalty-based random walk in G’. We use the above algorithm as a preprocessing method to enhance the accuracy of unsupervised IDS by retaining the local proximity features of packets maximally. The original features of the packet are combined with the local proximity features as the input of a deep auto-encoder for IDS. Experiments based on ISCX2012 show that the proposal outperforms the state-of-the-art algorithms by 11.6% with respect to the accuracy of unsupervised IDS. It is the first time to introduce graph representation learning for packet-embedded preprocessing in the field of IDS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao-Rui Su ◽  
Zhu-Hong You ◽  
Lun Hu ◽  
Yu-An Huang ◽  
Yi Wang ◽  
...  

Protein–protein interaction (PPI) is the basis of the whole molecular mechanisms of living cells. Although traditional experiments are able to detect PPIs accurately, they often encounter high cost and require more time. As a result, computational methods have been used to predict PPIs to avoid these problems. Graph structure, as the important and pervasive data carriers, is considered as the most suitable structure to present biomedical entities and relationships. Although graph embedding is the most popular approach for graph representation learning, it usually suffers from high computational and space cost, especially in large-scale graphs. Therefore, developing a framework, which can accelerate graph embedding and improve the accuracy of embedding results, is important to large-scale PPIs prediction. In this paper, we propose a multi-level model LPPI to improve both the quality and speed of large-scale PPIs prediction. Firstly, protein basic information is collected as its attribute, including positional gene sets, motif gene sets, and immunological signatures. Secondly, we construct a weighted graph by using protein attributes to calculate node similarity. Then GraphZoom is used to accelerate the embedding process by reducing the size of the weighted graph. Next, graph embedding methods are used to learn graph topology features from the reconstructed graph. Finally, the linear Logistic Regression (LR) model is used to predict the probability of interactions of two proteins. LPPI achieved a high accuracy of 0.99997 and 0.9979 on the PPI network dataset and GraphSAGE-PPI dataset, respectively. Our further results show that the LPPI is promising for large-scale PPI prediction in both accuracy and efficiency, which is beneficial to other large-scale biomedical molecules interactions detection.


Author(s):  
Guangtao Wang ◽  
Rex Ying ◽  
Jing Huang ◽  
Jure Leskovec

Self-attention mechanism in graph neural networks (GNNs) led to state-of-the-art performance on many graph representation learning tasks. Currently, at every layer, attention is computed between connected pairs of nodes and depends solely on the representation of the two nodes. However, such attention mechanism does not account for nodes that are not directly connected but provide important network context. Here we propose Multi-hop Attention Graph Neural Network (MAGNA), a principled way to incorporate multi-hop context information into every layer of attention computation. MAGNA diffuses the attention scores across the network, which increases the receptive field for every layer of the GNN. Unlike previous approaches, MAGNA uses a diffusion prior on attention values, to efficiently account for all paths between the pair of disconnected nodes. We demonstrate in theory and experiments that MAGNA captures large-scale structural information in every layer, and has a low-pass effect that eliminates noisy high-frequency information from graph data. Experimental results on node classification as well as the knowledge graph completion benchmarks show that MAGNA achieves state-of-the-art results: MAGNA achieves up to 5.7% relative error reduction over the previous state-of-the-art on Cora, Citeseer, and Pubmed. MAGNA also obtains the best performance on a large-scale Open Graph Benchmark dataset. On knowledge graph completion MAGNA advances state-of-the-art on WN18RR and FB15k-237 across four different performance metrics.


2021 ◽  
Vol 13 (3) ◽  
pp. 526
Author(s):  
Shengliang Pu ◽  
Yuanfeng Wu ◽  
Xu Sun ◽  
Xiaotong Sun

The nascent graph representation learning has shown superiority for resolving graph data. Compared to conventional convolutional neural networks, graph-based deep learning has the advantages of illustrating class boundaries and modeling feature relationships. Faced with hyperspectral image (HSI) classification, the priority problem might be how to convert hyperspectral data into irregular domains from regular grids. In this regard, we present a novel method that performs the localized graph convolutional filtering on HSIs based on spectral graph theory. First, we conducted principal component analysis (PCA) preprocessing to create localized hyperspectral data cubes with unsupervised feature reduction. These feature cubes combined with localized adjacent matrices were fed into the popular graph convolution network in a standard supervised learning paradigm. Finally, we succeeded in analyzing diversified land covers by considering local graph structure with graph convolutional filtering. Experiments on real hyperspectral datasets demonstrated that the presented method offers promising classification performance compared with other popular competitors.


Author(s):  
Aneesh Balakrishnan ◽  
Dan Alexandrescu ◽  
Maksim Jenihhin ◽  
Thomas Lange ◽  
Maximilien Glorieux

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2111
Author(s):  
Bo-Wei Zhao ◽  
Zhu-Hong You ◽  
Lun Hu ◽  
Zhen-Hao Guo ◽  
Lei Wang ◽  
...  

Identification of drug-target interactions (DTIs) is a significant step in the drug discovery or repositioning process. Compared with the time-consuming and labor-intensive in vivo experimental methods, the computational models can provide high-quality DTI candidates in an instant. In this study, we propose a novel method called LGDTI to predict DTIs based on large-scale graph representation learning. LGDTI can capture the local and global structural information of the graph. Specifically, the first-order neighbor information of nodes can be aggregated by the graph convolutional network (GCN); on the other hand, the high-order neighbor information of nodes can be learned by the graph embedding method called DeepWalk. Finally, the two kinds of feature are fed into the random forest classifier to train and predict potential DTIs. The results show that our method obtained area under the receiver operating characteristic curve (AUROC) of 0.9455 and area under the precision-recall curve (AUPR) of 0.9491 under 5-fold cross-validation. Moreover, we compare the presented method with some existing state-of-the-art methods. These results imply that LGDTI can efficiently and robustly capture undiscovered DTIs. Moreover, the proposed model is expected to bring new inspiration and provide novel perspectives to relevant researchers.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 222956-222965
Author(s):  
Dong Liu ◽  
Qinpeng Li ◽  
Yan Ru ◽  
Jun Zhang

Author(s):  
Leon Hetzel ◽  
David S. Fischer ◽  
Stephan Günnemann ◽  
Fabian J. Theis

Sign in / Sign up

Export Citation Format

Share Document