Mechanism of Actions Involved in Sustainable Ecorestoration of Petroleum Hydrocarbons Polluted Soil by the Beneficial Microorganism

Author(s):  
Charles Oluwaseun Adetunji ◽  
Osikemekha Anthony Anani ◽  
Deepak Panpatte
2018 ◽  
Vol 6 (2) ◽  
pp. 2568-2576 ◽  
Author(s):  
Shahirul Amad Hanafiah ◽  
Mahmoud Ahmed Mohamed ◽  
Sarah Caradec ◽  
Nicolas Fatin-Rouge

2018 ◽  
Vol 39 (3) ◽  
pp. 133 ◽  
Author(s):  
Maria Kuyukina ◽  
Anastasiya Krivoruchko ◽  
Irina Ivshina

The problem of soil contamination with petroleum hydrocarbons and heavy metals is becoming particularly acute for large oil-producing countries, like the Russian Federation. Both hydrocarbon and metal contaminants impact negatively the soil biota and human health, thus requiring efficient methods for their detoxification and elimination. Bioremediation of soil co-contaminated with hydrocarbon and metal pollutants is complicated by the fact that, although the two components must be treated differently, they mutually affect the overall removal efficiency. Heavy metals are reported to inhibit biodegradation of hydrocarbons by interfering with microbial enzymes directly involved in biodegradation or through the interaction with enzymes involved in general metabolism. Here we discuss recent progress and challenges in bioremediation of soils co-contaminated with hydrocarbons and heavy metals, focusing on selecting metal-resistant biodegrading strains and biosurfactant amendments.


Author(s):  
Mariana MARINESCU ◽  
M. DUMITRU ◽  
Anca LĂCĂTUŞU ◽  
Gabriela MIHALACHE

Crude oil bioremediation of soils is limited by the bacteria activity in degrading the spills hydrocarbons. The aim of this study is to enhance the bioremediation of soils polluted with crude oil by adding the natural biodegradable product and bacterial inoculum. Biodegradation was quantified by total petroleum hydrocarbons (TPH) analyses. Petroleum hydrocarbon pollution is one of the main environmental problems, not only by the important amounts released but also because of their toxicity. The main objective of this work is to accelerate the biodegradation processes. The enhancement of petroleum hydrocarbons degradation was achieved under natural product treatment and bacterial inoculum. The bacterial inoculum was used to enrich indigenous microbes to enhance biodegradation rate in the green house experiment.


2013 ◽  
Vol 777 ◽  
pp. 258-262 ◽  
Author(s):  
Jin Lan Xu ◽  
Jie Zhang ◽  
Ting Lin Huang ◽  
An Long Xi

In most field studies, enhancing biodegradation of petroleum hydrocarbons depends on the specific microbial population present. It is a dispute whether inoculation microbial consortium improved the degradation of petroleum because indigenous microorganism can easily adapt to surroundings and contend for inoculation microbial consortium. Therefore, all of three technologies (natural attenuation, biostimulation and bioaugmentation) were evaluated. After 8 weeks of bioremediation, it was observed that bioaugmentation most effectively removed 53% of oil under inoculation condition. Poor oil removal of below 4% was observed under natural attenuation without inoculation. In addition, it was found that the degradation of oil in oil-polluted soil followed second-order model and acquired the dynamics equations. The half-life of natural attenuation, biostimulation and bioaugmentation was 833 days, 75days, 25days, respectively. The results indicated bioaugmentation could improve efficiently the degradation of TPH and shorten the bioremediation period.


2018 ◽  
Vol 5 (2) ◽  
pp. 100-105
Author(s):  
Amir Hossein Baghaie ◽  
Mehran Keshavarzi

Contamination with heavy metals and petroleum hydrocarbons is considered as an environmental problem. Thus, this research was done to evaluate the effect of montmorillonite nano-clay on the changes in petroleum hydrocarbon degradation and cadmium (Cd) concentration in plant grown in a Cd-polluted soil. Treatments consisted of two levels of montmorillonite nano-clay (0 and 1% W/W) in a Cd-polluted soil (0, 5, 10 mg Cd/kg soil) and crude oil-polluted soil (0, 1 and 2% W/W). The plant used in this study was Tall Fescue (Festuca arundinacea L.). After 20 weeks, the concentration of Cd in plants was measured by atomic absorption spectroscopy and the total petroleum hydrocarbon (TPHs) in the soil was determined using the GC-mass spectrometry. Soil respiration was determined according to the method used by Qiao et al. ANOVA was used for statistical analysis of data. The least significant difference (LSD) test was used to determine the differences between the means. The application of 1% (w/w) montmorillonite nano-clay in Cd-polluted soil (10 mg Cd) without crude oil decreased Cd concentration in plant and increased microbial respiration by 18% and 34%, respectively. In addition, the application of 1% montmorillonite nano-clay in soil polluted with 1% crude oil and 10 mg Cd enhanced TPHs degradation by 27%. The use of montmorillonite nano-clay increased Cd adsorption in soil which resulted in an increase in microbial respiration and, hence the degradability of petroleum hydrocarbon in the soil.


2021 ◽  
Vol 25 (3) ◽  
pp. 475-479
Author(s):  
E.O. Nwaichi ◽  
C.O. Chukwuere ◽  
P.J. Abosi ◽  
G.I. Onukwuru

The present study investigated the viability of purple nutsedge in the phytoremediation of a crude oilcontaminated land in the Kom-Kom community, Oyigbo, Rivers state, Nigeria. 150g of soil samples were randomly collected from two (2) different points on the polluted site and a control site and analyzed for Petroleum Aromatic Hydrocarbons (PAHs), Total Petroleum Hydrocarbons (TPH) and Heavy metals ( Pb, Cd, Cr & Ni). in soils and plants before and after phytoremediation. Plants were transplanted into the contaminated and contaminated soil after soil sample collection.After planting,the progress of plant growth was observed and recorded biweekly for 3 months before harvesting. From the results obtained, over 80% and 66% PAHs and TPHs phytodegradation efficiencies were achieved using the plant while Cd, Pb and Cr were removed by 90%, 67% and 39.2% respectively. The Bioaccumulation Factor (B.F) of the heavymetals in study plant were found to be greated than 1 which makes it suitable for phytoextraction of heavy metals. Therefore, the study suggests that purple nutsedge can be useful in the phytoremediation of a crudeoil polluted soil. Keywords: Hydrocarbons, Heavy metals, Phytoremediation, Crude oil, Purple nutsedge


Sign in / Sign up

Export Citation Format

Share Document