Magnetic Nanomaterials and Their Biomedical Applications

Author(s):  
Papori Seal ◽  
Dipraj Saikia ◽  
J. P. Borah
2021 ◽  
Vol 11 (22) ◽  
pp. 11075
Author(s):  
Angela Spoială ◽  
Cornelia-Ioana Ilie ◽  
Luminița Narcisa Crăciun ◽  
Denisa Ficai ◽  
Anton Ficai ◽  
...  

The interconnection of nanotechnology and medicine could lead to improved materials, offering a better quality of life and new opportunities for biomedical applications, moving from research to clinical applications. Magnetite nanoparticles are interesting magnetic nanomaterials because of the property-depending methods chosen for their synthesis. Magnetite nanoparticles can be coated with various materials, resulting in “core/shell” magnetic structures with tunable properties. To synthesize promising materials with promising implications for biomedical applications, the researchers functionalized magnetite nanoparticles with silica and, thanks to the presence of silanol groups, the functionality, biocompatibility, and hydrophilicity were improved. This review highlights the most important synthesis methods for silica-coated with magnetite nanoparticles. From the presented methods, the most used was the Stöber method; there are also other syntheses presented in the review, such as co-precipitation, sol-gel, thermal decomposition, and the hydrothermal method. The second part of the review presents the main applications of magnetite-silica core/shell nanostructures. Magnetite-silica core/shell nanostructures have promising biomedical applications in magnetic resonance imaging (MRI) as a contrast agent, hyperthermia, drug delivery systems, and selective cancer therapy but also in developing magnetic micro devices.


Nanoscale ◽  
2015 ◽  
Vol 7 (18) ◽  
pp. 8233-8260 ◽  
Author(s):  
Raluca M. Fratila ◽  
Sara Rivera-Fernández ◽  
Jesús M. de la Fuente

Author(s):  
Linfeng Chen ◽  
Jining Xie ◽  
Kiran R. Aatre ◽  
Vijay K. Varadan

Iron oxide magnetic nanomaterials are among the most widely used nanomaterials in nanomedicine. Due to their magnetic and structural properties, iron oxide magnetic nanotubes are extremely attractive for biomedical applications. This paper presents the synthesis of iron oxide magnetic nanotubes, and their potential applications in drug delivery. Three types of iron oxide magnetic nanotubes, i.e., hematite, maghemite, and magnetite, were synthesized using template and hydrothermal methods, and the effects of synthesis methods on the morphological and crystalline properties of the synthesized magnetic nanotubes were analyzed. The magnetization properties of the three types of synthesized magnetic nanotubes and their responses to external magnetic fields were studied. To explore their applications in drug delivery, the drug loading and release capabilities of the synthesized magnetic nanotubes were investigated. The final part of this paper discusses several important issues related to the applications of iron oxide magnetic nanotubes for drug delivery, especially the controlled release of drugs.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 503
Author(s):  
Hung-Vu Tran ◽  
Nhat M. Ngo ◽  
Riddhiman Medhi ◽  
Pannaree Srinoi ◽  
Tingting Liu ◽  
...  

Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in biomedicine, most practical applications require IONP-based platforms that can perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs with different classes of organic and inorganic materials can produce multifunctional nanoplatforms that can perform several functions simultaneously, allowing their application in a broad spectrum of biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers, and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight the recent technological advances achieved from such integrated multifunctional platforms and their potential use in biomedical applications, including dual-mode imaging for biomolecule detection, targeted drug delivery, photodynamic therapy, chemotherapy, and magnetic hyperthermia therapy.


Author(s):  
Anupam Guleria ◽  
Kalpana Priyatharchini ◽  
Dinesh Kumar

Author(s):  
T. L. Hayes

Biomedical applications of the scanning electron microscope (SEM) have increased in number quite rapidly over the last several years. Studies have been made of cells, whole mount tissue, sectioned tissue, particles, human chromosomes, microorganisms, dental enamel and skeletal material. Many of the advantages of using this instrument for such investigations come from its ability to produce images that are high in information content. Information about the chemical make-up of the specimen, its electrical properties and its three dimensional architecture all may be represented in such images. Since the biological system is distinctive in its chemistry and often spatially scaled to the resolving power of the SEM, these images are particularly useful in biomedical research.In any form of microscopy there are two parameters that together determine the usefulness of the image. One parameter is the size of the volume being studied or resolving power of the instrument and the other is the amount of information about this volume that is displayed in the image. Both parameters are important in describing the performance of a microscope. The light microscope image, for example, is rich in information content (chemical, spatial, living specimen, etc.) but is very limited in resolving power.


Author(s):  
Philippe Fragu

The identification, localization and quantification of intracellular chemical elements is an area of scientific endeavour which has not ceased to develop over the past 30 years. Secondary Ion Mass Spectrometry (SIMS) microscopy is widely used for elemental localization problems in geochemistry, metallurgy and electronics. Although the first commercial instruments were available in 1968, biological applications have been gradual as investigators have systematically examined the potential source of artefacts inherent in the method and sought to develop strategies for the analysis of soft biological material with a lateral resolution equivalent to that of the light microscope. In 1992, the prospects offered by this technique are even more encouraging as prototypes of new ion probes appear capable of achieving the ultimate goal, namely the quantitative analysis of micron and submicron regions. The purpose of this review is to underline the requirements for biomedical applications of SIMS microscopy.Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue.


Sign in / Sign up

Export Citation Format

Share Document