Iron Oxide Magnetic Nanotubes and Their Drug Loading and Release Capabilities

Author(s):  
Linfeng Chen ◽  
Jining Xie ◽  
Kiran R. Aatre ◽  
Vijay K. Varadan

Iron oxide magnetic nanomaterials are among the most widely used nanomaterials in nanomedicine. Due to their magnetic and structural properties, iron oxide magnetic nanotubes are extremely attractive for biomedical applications. This paper presents the synthesis of iron oxide magnetic nanotubes, and their potential applications in drug delivery. Three types of iron oxide magnetic nanotubes, i.e., hematite, maghemite, and magnetite, were synthesized using template and hydrothermal methods, and the effects of synthesis methods on the morphological and crystalline properties of the synthesized magnetic nanotubes were analyzed. The magnetization properties of the three types of synthesized magnetic nanotubes and their responses to external magnetic fields were studied. To explore their applications in drug delivery, the drug loading and release capabilities of the synthesized magnetic nanotubes were investigated. The final part of this paper discusses several important issues related to the applications of iron oxide magnetic nanotubes for drug delivery, especially the controlled release of drugs.

2021 ◽  
Vol 11 (22) ◽  
pp. 11075
Author(s):  
Angela Spoială ◽  
Cornelia-Ioana Ilie ◽  
Luminița Narcisa Crăciun ◽  
Denisa Ficai ◽  
Anton Ficai ◽  
...  

The interconnection of nanotechnology and medicine could lead to improved materials, offering a better quality of life and new opportunities for biomedical applications, moving from research to clinical applications. Magnetite nanoparticles are interesting magnetic nanomaterials because of the property-depending methods chosen for their synthesis. Magnetite nanoparticles can be coated with various materials, resulting in “core/shell” magnetic structures with tunable properties. To synthesize promising materials with promising implications for biomedical applications, the researchers functionalized magnetite nanoparticles with silica and, thanks to the presence of silanol groups, the functionality, biocompatibility, and hydrophilicity were improved. This review highlights the most important synthesis methods for silica-coated with magnetite nanoparticles. From the presented methods, the most used was the Stöber method; there are also other syntheses presented in the review, such as co-precipitation, sol-gel, thermal decomposition, and the hydrothermal method. The second part of the review presents the main applications of magnetite-silica core/shell nanostructures. Magnetite-silica core/shell nanostructures have promising biomedical applications in magnetic resonance imaging (MRI) as a contrast agent, hyperthermia, drug delivery systems, and selective cancer therapy but also in developing magnetic micro devices.


2016 ◽  
Vol 875 ◽  
pp. 24-44
Author(s):  
Ming Guo Ma ◽  
Shan Liu ◽  
Lian Hua Fu

CaCO3 has six polymorphs such as vaterite, aragonite, calcite, amorphous, crystalline monohydrate, and hexahydrate CaCO3. CaCO3 is a typical biomineral that is abundant in both organisms and nature and has important industrial applications. Cellulose could be used as feedstocks for producing biofuels, bio-based chemicals, and high value-added bio-based materials. In the past, more attentions have been paid to the synthesis and applications of CaCO3 and cellulose/CaCO3 nanocomposites due to its relating properties such as mechanical strength, biocompatibility, and biodegradation, and bioactivity, and potential applications including biomedical, antibacterial, and water pretreatment fields as functional materials. A variety of synthesis methods such as the hydrothermal/solvothermal method, biomimetic mineralization method, microwave-assisted method, (co-) precipitation method, and sonochemistry method, were employed to the preparation of CaCO3 and cellulose/CaCO3 nanocomposites. In this chapter, the recent development of CaCO3 and cellulose/CaCO3 nanocomposites has been reviewed. The synthesis, characterization, and biomedical applications of CaCO3 and cellulose/CaCO3 nanocomposites are summarized. The future developments of CaCO3 and cellulose/CaCO3 nanocomposites are also suggested.


NANO ◽  
2015 ◽  
Vol 10 (01) ◽  
pp. 1550010 ◽  
Author(s):  
R. Afshari ◽  
S. Mazinani ◽  
M. Abdouss

Carbon nanotube-natural biopolymer nanovectors have important potential applications in delivery system for drugs and biomolecules. In this work, the use of multi-walled carbon nanotubes (MWCNT) as nanoreservoirs for drug loading and controlled release is demonstrated. We synthesized different carbon nanotube-based drug delivery systems including acid and amide-functionalized MWCNT; chitosan (CS) covalently grafted to functionalized MWCNT and MWCNT-CS nanoparticles (NPs) using an ionotropic gelation method as a sustained-release systems for delivery of Tenofovir (hydrophilic anti-retroviral drug). The prepared NPs as different drug delivery systems were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). As it is shown, in vitro drug release studies indicated that the cumulative release rate of Tenofovir from MWCNT–CS NPs shows the best result and it reaches the maximum value (90%) after about 120 h. Moreover, comparing to ungrafted CNTs, MWCNT–CS shows high dispersability and long-term stability in aqueous medium which approves the effective solubilization of MWCNT followed by grafting with CS.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Fransisca Leonard ◽  
Katherine Margulis ◽  
Xuewu Liu ◽  
Srimeenakshi Srinivasan ◽  
Shlomo Magdassi ◽  
...  

AbstractEnsuring drug loading efficiency and consistency is one of the most critical stages in engineering drug delivery vectors based on porous materials. Here we propose a technique to significantly enhance the effciency of loading by employing simple and widely available methods: applying low pressure with and without centrifugation. Our results point toward the advantages of the proposed method over the passive loading, especially when the difference between the dimensions of loaded materials and the pore diameter is small, an increase of up to 20-fold can be observed. The technique described in this study can be used for efficient and reproducible loading of porous materials with therapeutic molecules, nanoparticles and contrast imaging agents for biomedical applications.


2008 ◽  
Vol 5 (27) ◽  
pp. 1255-1261 ◽  
Author(s):  
Z Ahmad ◽  
H.B Zhang ◽  
U Farook ◽  
M Edirisinghe ◽  
E Stride ◽  
...  

In this short communication, we describe the scope and flexibility of using a novel device containing three coaxially arranged needles to form a variety of novel morphologies. Different combinations of materials are subjected to controlled flow through the device under the influence of an applied electric field. The resulting electrohydrodynamic flow allows us to prepare double-layered bubbles, porous encapsulated threads and nanocapsules containing three layers. The ability to process such multilayered structures is very significant for biomedical engineering applications, for example, generating capsules for drug delivery, which can provide multistage controlled release.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1662
Author(s):  
Mahadevamurthy Murali ◽  
Nataraj Kalegowda ◽  
Hittanahallikoppal G. Gowtham ◽  
Mohammad Azam Ansari ◽  
Mohammad N. Alomary ◽  
...  

Zinc oxide nanoparticles have become one of the most popular metal oxide nanoparticles and recently emerged as a promising potential candidate in the fields of optical, electrical, food packaging, and biomedical applications due to their biocompatibility, low toxicity, and low cost. They have a role in cell apoptosis, as they trigger excessive reactive oxygen species (ROS) formation and release zinc ions (Zn2+) that induce cell death. The zinc oxide nanoparticles synthesized using the plant extracts appear to be simple, safer, sustainable, and more environmentally friendly compared to the physical and chemical routes. These biosynthesized nanoparticles possess strong biological activities and are in use for various biological applications in several industries. Initially, the present review discusses the synthesis and recent advances of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their biomedical applications (such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, photocatalytic, wound healing, and drug delivery), followed by their mechanisms of action involved in detail. This review also covers the drug delivery application of plant-mediated zinc oxide nanoparticles, focusing on the drug-loading mechanism, stimuli-responsive controlled release, and therapeutic effect. Finally, the future direction of these synthesized zinc oxide nanoparticles’ research and applications are discussed.


2022 ◽  
Author(s):  
Peijia Xu ◽  
Ting Xue ◽  
Jonathan Padelford ◽  
Xingkui Xue ◽  
Alyssa Y Wu ◽  
...  

Abstract Background Pancreatic cancer remains one of the most lethal cancers largely due to the inefficient delivery of therapeutics. Nanomaterials have been extensively investigated as drug delivery platforms, showing improved drug pharmacodynamics and pharmacokinetics. However, their applications in pancreatic cancer have not yet been successful due to limited tumor delivery caused by dense tumor stroma and distorted tumor vasculatures. Meanwhile, smaller-sized nanomaterials have shown improved tumor delivery and retention in various tumors, including pancreatic tumors, suggesting their potential in enhancing drug delivery. Methods An ultrafine iron oxide nanoparticle (uIONP) was used to encapsulate 7-ethyl-10-hydroxyl camptothecin (SN38), the water-insoluble active metabolite of chemotherapy drug irinotecan for treating pancreatic cancer in clinic. Insulin-like growth factor 1 (IGF-1) was conjugated to uIONP as a ligand for targeting pancreatic cancer and stromal cells overexpressing IGF-1 receptor (IGF1R). The SN38 loading and release profile were characterized. The cancer cell targeting and induced apoptosis by developed nano-formulationIGF1-uIONP/SN38 were also investigated. Results IGF1-uIONP/SN38 demonstrated stable drug loading in physiological pH with the loading efficiency of 68.2 ± 3.5% (SN38/Fe, wt%) and <7% release for 24 hours. In tumor-interstitial- and lysosomal-mimicking pH (6.5 and 5.5), 52.2 and 91.3% of encapsulated SN38 were released over 24 hours. The IGF1-uIONP/SN38 exhibited specific receptor-mediated cell targeting and cytotoxicity to MiaPaCa-2 cells with IC50 of 11.8 ± 2.3 nM, but not to HEK293 human embryonic kidney cells. Conclusion The IGF1-uIONP significantly improved the delivery of SN38 to targeted pancreatic cancer cells, holding the potential for in vivo theranostic applications.


Author(s):  
Vijay Mishra ◽  
Pallavi Nayak ◽  
Manvendra Singh ◽  
Murtaza M. Tambuwala ◽  
Alaa A. Aljabali ◽  
...  

Background: Silver nanoparticles (AgNPs) are one of the most investigated nanostructures in recent years, which gives more challenging and promising qualities in different biomedical applications. The AgNPs synthesized by the green approach provide potential healthcare benefits over chemical approaches, including improvement of tissue restoration, drug delivery, diagnosis, environmentally friendly and a boon to cancer treatment. Objective: In the current scenario, the development of safe and effective drug delivery systems is the utmost concern of formulation development scientists as well as clinicians. Methods: Google, Web of Science, PubMed, portals have been searched for potentially relevant literature to get latest developments and updated information related to different aspects of green synthesized AgNPs along with their biomedical applications especially in the treatment of different types of cancers. Results: The present review highlights the latest published research regarding the different green approaches for the synthesis of AgNPs, their characterization techniques as well as various biomedical applications, particularly in cancer treatment. In this context, environment friendly AgNPs are proving themselves as better candidates in terms of size, drug loading and release efficiency, targeting efficiency, minimal drug-associated side effects, pharmacokinetic profiling, and biocompatibility issues. Conclusion: With continuous efforts by multidisciplinary team approaches, nanotechnology-based AgNPs will shed new light on diagnostics and therapeutics in various disease treatments. However, the toxicity issues of AgNPs needs the greatest attention as unanticipated toxic effects must be ruled out for their diversified applications.


2015 ◽  
Vol 18 (3) ◽  
pp. 170-180
Author(s):  
Anh Thi Tram Tu ◽  
Huy Thuc Ha

Highly deacetylated chitosan (CS) reacted with anhydride acetic (Ac2O) to produce chitosan with various degree of deacetylation (DDA) depending on the CS/Ac2O ratios. The structure of products was characterized by FT-IR, 1H NMR, 13C NMR, and the molecular weight was identified by GPC. The DDA of products decreases as the CS/Ac2O ratio increases. The products with less than 80 % DDA were soluble in water with a wide pH range. The water-soluble chitosan can be used in many biomedical applications such as manufacturing drug delivery systems or functionalized iron oxide nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document