Ultrasonic Inspection of Weld Defects Using Total Focusing Method

Author(s):  
Lalith Sai Srinivas Pillarisetti ◽  
Subramanian Anandamurugan
Author(s):  
Geoff B. Rogers ◽  
Steve C. Rapp ◽  
Garry M. Matocha

As part of a program to increase the operating pressure of a 20” (508.0mm) natural gas pipeline, a careful plan was developed and executed to ensure the integrity of the pipeline. The pipeline was built in 1943 using linepipe produced having a DC ERW longitudinal seam weld and travels along a densely populated route in the suburbs of Philadelphia. The work plan included ILI inspection methods to detect corrosion (MFL tool), mechanical damage (geometry tool), and ERW seam weld defects (TFI MFL tool). After the anomalies were identified and the necessary pipe replacements were completed, the pipeline was hydrostatically tested prior to being returned to service at the newly established operating pressure. The paper will describe the project planning process used to ensure the fitness and reliability of the pipeline and provide a review of the ILI results, excavations, pipe replacements, and hydrostatic test experiences. Of particular interest were the capabilities and limitations of the TFI tool to detect, discriminate, and size ERW seam weld defects. Seam weld defects were evaluated using ILI inspection methods and in many cases field prove-up ultrasonic inspection methods. When an ERW defect was confirmed by field NDT prove-up, the pipe section was removed and metallographic work was conducted to characterize the ERW flaw size and nature. A correlation was then possible between the sizing capability of the TFI tool, the ultrasonic prove-up method, and the actual defect size. All this information is useful to establish a level of confidence in defect sizing for future project needs. The final validation of the pipeline fitness at the higher operating pressure was established through the successful hydrostatic test. A short summary will be given on how the pipeline fitness was qualified and demonstrated.


Author(s):  
Sebastien Rigault ◽  
Mark Carte ◽  
Michael Moles

Automated ultrasonic inspection of pipeline girth welds during construction relies on well-focused probes. With the arrival of industrial phased arrays, focusing in the vertical direction became straightforward. However, arrays are generally unfocused in the horizontal (circumferential) direction. This can lead to oversizing of small defects, and unnecessary repairs. Modeling was performed to determine the optimum and most cost-effective method of focusing laterally. These results showed that mechanically curving the array in the passive axis provided excellent results. Suitable arrays were manufactured and tested on calibration notches and weld defects. Comparative results will be shown between unfocused and focused arrays. These focused arrays are now a common product on PipeWIZARD.


Author(s):  
J Downing ◽  
A Hook

Two steel substrate test panels were developed to represent common plate thicknesses found on naval vessels and scanned using the Babcock developed ultrasonic technique. One sample comprised of a series of slotted surface breaking flaws of varying widths and through thicknesses to represent fracturing/cracking. The inspection method detected simulated cracking to a depth of 2mm and 0.5mm in width. The second sample included numerous loss of wall thickness areas of varying diameters and through thicknesses, with the smallest detectable loss of wall thickness being 0.1mm at a 15mm diameter. After proving confidence in detection, there was a need to characterise flaws to provide support and ascertain a repair action. Samples were produced that were subjected to either impact or heat exposure to induce realistic representative damage. The practical ultrasonic method was successfully used to independently characterise between the samples, with induced de-laminations caused by blisters, and multi layered matrix cracking caused by varying levels of projectile impacts, due to their unique morphology.


Sign in / Sign up

Export Citation Format

Share Document