An Online Path Planning with Modified Autonomous Parallel Parking Controller for Collision Avoidance

Author(s):  
Naitik M. Nakrani ◽  
Maulin M. Joshi
2021 ◽  
Vol 9 (4) ◽  
pp. 405
Author(s):  
Raphael Zaccone

While collisions and groundings still represent the most important source of accidents involving ships, autonomous vessels are a central topic in current research. When dealing with autonomous ships, collision avoidance and compliance with COLREG regulations are major vital points. However, most state-of-the-art literature focuses on offline path optimisation while neglecting many crucial aspects of dealing with real-time applications on vessels. In the framework of the proposed motion-planning, navigation and control architecture, this paper mainly focused on optimal path planning for marine vessels in the perspective of real-time applications. An RRT*-based optimal path-planning algorithm was proposed, and collision avoidance, compliance with COLREG regulations, path feasibility and optimality were discussed in detail. The proposed approach was then implemented and integrated with a guidance and control system. Tests on a high-fidelity simulation platform were carried out to assess the potential benefits brought to autonomous navigation. The tests featured real-time simulation, restricted and open-water navigation and dynamic scenarios with both moving and fixed obstacles.


Author(s):  
Amaanullah ◽  
Muhammed Ahmed Lamba ◽  
Surya Prakash S ◽  
Shrikant S. Tangade ◽  
Syed Sehraab Nawaz ◽  
...  

Author(s):  
Nikolai Moshchuk ◽  
Shih-Ken Chen

Parallel parking can be a difficult task for novice drivers or drivers who seldom drive in congested city where parking space is limited. Parking Assist is an innovative system designed to aid the driver in performing sometimes difficult parallel parking maneuvers. Many companies are developing such systems with major automakers, such as Valeo, Aisin Seiki, Hella, Robert Bosch, and TRW. For example, Toyota IPA (Intelligent Parking Assist) system uses a rear view camera and automatically steer the vehicle into the parking spot with driver controlling braking. This paper describes the development of parking path planning strategies based on available parking space. A virtual turn center will first be defined and derived based on vehicle configuration. Required parking space for one or two cycle parking maneuver will then be determined. Path planning strategies for both one and two turn parking maneuvers will be developed next. Finally CarSim simulation will be performed to verify the design.


Author(s):  
Tasher Ali Sheikh ◽  
Swacheta Dutta ◽  
Smriti Baruah ◽  
Pooja Sharma ◽  
Sahadev Roy

The concept of path planning and collision avoidance are two of the most common theories applied for designing and developing in advanced autonomous robotics applications. NI LabView makes it possible to implement real-time processor for obstacle avoidance. The obstacle avoidance strategy ensures that the robot whenever senses the obstacle stops without being collided and moves freely when path is free, but sometimes there exists a probability that once the path is found free and the robot starts moving, then within a fraction of milliseconds, the robot again sense the obstacle and it stops. This continuous swing of stop and run within a very small period of time may cause heavy burden on the system leading to malfunctioning of the components of the system. This paper deals with overcoming this drawback in a way that even after the robot calculates the path is free then also it will wait for a specific amount of time before running it. So as to confirm that if again the sensor detects the obstacle within that specified period then robot don’t need to transit its state suddenly thus avoiding continuous transition of run and stop. Thus it reduces the heavy burden on the system.


2018 ◽  
Vol 93 (1-2) ◽  
pp. 193-211 ◽  
Author(s):  
Egidio D’Amato ◽  
Massimiliano Mattei ◽  
Immacolata Notaro

2021 ◽  
Author(s):  
Xinli Xu ◽  
Peng Cai ◽  
Zahoor Ahmed ◽  
Vidya Sagar Yellapu ◽  
Weidong Zhang

Author(s):  
R Fışkın ◽  
H Kişi ◽  
E Nasibov

The development of soft computing techniques in recent years has encouraged researchers to study on the path planning problem in ship collision avoidance. These techniques have widely been implemented in marine industry and technology-oriented novel solutions have been introduced. Various models, methods and techniques have been proposed to solve the mentioned path planning problem with the aim of preventing reoccurrence of the problem and thus strengthening marine safety as well as providing fuel consumption efficiency. The purpose of this study is to scrutinize the models, methods and technologies proposed to settle the path planning issue in ship collision avoidance. The study also aims to provide certain bibliometric information which develops a literature map of the related field. For this purpose, a thorough literature review has been carried out. The results of the study have pointedly showed that the artificial intelligence methods, fuzzy logic and heuristic algorithms have greatly been used by the researchers who are interested in the related field.


Sign in / Sign up

Export Citation Format

Share Document