Design and Optimization of a Robust Fractional-Order FOPI Controller for Frequency Control of a Microgrid

Author(s):  
Rajasi Mandal ◽  
Kalyan Chatterjee
2020 ◽  
Vol 54 (3) ◽  
pp. 323-342
Author(s):  
Deepesh Sharma ◽  
Naresh Kumar Yadav

PurposeIn computer application scenario, data mining task is rarely utilized in power system, as an enhanced part, this work presented data mining task in power systems, to overcome frequency deviation issues. Load frequency control (LFC) is a primary challenging problem in an interconnected multi-area power system.Design/methodology/approachThis paper adopts lion algorithm (LA) for the LFC of two area multi-source interconnected power systems. The LA calculates the optimal gains of the fractional order PI (FOPI) controller and hence the proposed LA-based FOPI controller (LFOPI) is developed.FindingsFor the performance analysis, the proposed algorithm compared with various algorithm is given as, 80.6% lesser than the FOPI algorithm, 2.5% lesser than the GWO algorithm, 2.5% lesser than the HSA algorithm, 4.7% lesser than the BBO algorithm, 1.6% lesser than PSO algorithm and 80.6% lesser than the GA algorithm.Originality/valueThe LFOPI controller is the proposed controlling method, which is nothing but the FOPI controller that gets the optimal gain using the LA. This method produces better performance in terms of converging behavior, optimization of controller gain, transient profile and steady-state response.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3604
Author(s):  
Hady H. Fayek ◽  
Panos Kotsampopoulos

This paper presents load frequency control of the 2021 Egyptian power system, which consists of multi-source electrical power generation, namely, a gas and steam combined cycle, and hydro, wind and photovoltaic power stations. The simulation model includes five generating units considering physical constraints such as generation rate constraints (GRC) and the speed governor dead band. It is assumed that a centralized controller is located at the national control center to regulate the frequency of the grid. Four controllers are applied in this research: PID, fractional-order PID (FOPID), non-linear PID (NPID) and non-linear fractional-order PID (NFOPID), to control the system frequency. The design of each controller is conducted based on the novel tunicate swarm algorithm at each operating condition. The novel method is compared to other widely used optimization techniques. The results show that the tunicate swarm NFOPID controller leads the Egyptian power system to a better performance than the other control schemes. This research also presents a comparison between four methods to self-tune the NFOPID controller at each operating condition.


2020 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Hady H. Fayek

Remote farms in Africa are cultivated lands planned for 100% sustainable energy and organic agriculture in the future. This paper presents the load frequency control of a two-area power system feeding those farms. The power system is supplied by renewable technologies and storage facilities only which are photovoltaics, biogas, biodiesel, solar thermal, battery storage and flywheel storage systems. Each of those facilities has 150-kW capacity. This paper presents a model for each renewable energy technology and energy storage facility. The frequency is controlled by using a novel non-linear fractional order proportional integral derivative control scheme (NFOPID). The novel scheme is compared to a non-linear PID controller (NPID), fractional order PID controller (FOPID), and conventional PID. The effect of the different degradation factors related to the communication infrastructure, such as the time delay and packet loss, are modeled and simulated to assess the controlled system performance. A new cost function is presented in this research. The four controllers are tuned by novel poor and rich optimization (PRO) algorithm at different operating conditions. PRO controller design is compared to other state of the art techniques in this paper. The results show that the PRO design for a novel NFOPID controller has a promising future in load frequency control considering communication delays and packet loss. The simulation and optimization are applied on MATLAB/SIMULINK 2017a environment.


2021 ◽  
Author(s):  
Baokun Wang ◽  
Shaohua Wang ◽  
Ying Luo

Abstract In this paper, a systematic design and high accuracy implementation of fractional order proportional integral (FOPI) controller is proposed for a permanent magnet synchronous motor (PMSM) speed system, and the numerical implementation performance of the fractional order operator is evaluated with comprehensive investigation using different implementation methods. Three commonly used numerical implementation methods of fractional operators are investigated and compared in this paper. Futhermore, for the impulse response invariant method, the effects of different discretization orders on the system control performance are compared. The simulation results show that the high accuracy numerical implementation method of the designed high-order FOPI controller has improved performance over normal accuracy fractional order operation implementation.


Author(s):  
Abdulsamed Tabak

In recent years, fractional order proportional-integral-derivative (FOPID) controllers have been applied in different areas in the academy due to their superior performance over conventional proportional-integral-derivative (PID) controllers. When the literature is reviewed, it has been observed that lack of studies that use swarm-based and multi-objective optimization algorithms together with FOPID controllers in frequency control of micro-grid. The load frequency control (LFC) problem is considered as two objectives in order to eliminate the complications that occur when only the frequency deviation is minimized. In our study, a method called MOGOA-FOPID in which both the frequency deviation and the control signal are minimized together for the frequency control in the microgrid is proposed. By using the multi-objective grasshopper optimization algorithm (MOGOA), both the frequency deviation and the control signal are minimized together, and thus, it is aimed to limit the battery capacity, reduce the flywheel jerk and avoid high diesel fuel consumption as well as an effective frequency control. In order to obtain a more realistic system, not only the photovoltaic (PV) solar and wind power but also the load demand is taken in a stochastic structure. Then, the results of the proposed MOGOA-FOPID are compared with the results of multi-objective genetic algorithm (MOGA)-based PID/FOPID and MOGOA-PID and its superiority is demonstrated. Finally, robustness tests of the system are performed under the perturbed parameters and outperform of MOGOA-FOPID over other methods is seen.


Sign in / Sign up

Export Citation Format

Share Document