Assessment of Seismic Displacement of Quay Walls

2021 ◽  
pp. 291-299
Author(s):  
K. Pushpa ◽  
S. K. Prasad ◽  
P. Nanjundaswamy
Keyword(s):  
2018 ◽  
Vol 5 (1) ◽  
pp. 1480189 ◽  
Author(s):  
Jayaprakash Vemuri ◽  
Syed Ehteshamuddin ◽  
Subramaniam V. L. Kolluru ◽  
Antonio Formisano

2018 ◽  
Vol 34 (2) ◽  
pp. 673-695 ◽  
Author(s):  
Jorge Macedo ◽  
Jonathan Bray ◽  
Norman Abrahamson ◽  
Thaleia Travasarou

Engineers often use simplified seismic slope displacement procedures to evaluate the seismic performance of earth structures and natural slopes. Current state of practice procedures typically separate the estimation of the ground motion intensity measure ( IM) from the estimate of seismic displacement ( D), given the selected IM hazard level. Thus D is estimated based on a single IM value. A straightforward performance-based seismic slope assessment procedure is proposed, which considers the full range of potential IM values to estimate seismic slope displacements directly related to a hazard level. Seismic performance is assessed through either a Newmark-type seismic displacement estimate or a calibrated seismic coefficient that can be used in pseudostatic slope stability analyses. The procedures were developed for a wide range of earth systems for shallow crustal earthquakes and subduction zone earthquakes. Currently employed simplified slope displacement procedures do not provide consistent assessments of the actual seismic slope displacement hazard. The proposed procedures can be readily used in practice to perform rigorous performance-based seismic slope displacement hazard assessments.


2017 ◽  
Vol 99 ◽  
pp. 74-85 ◽  
Author(s):  
Lian-heng Zhao ◽  
Xiao Cheng ◽  
Liang Li ◽  
Jia-qi Chen ◽  
Yingbin Zhang

2020 ◽  
Vol 224 (1) ◽  
pp. 416-434
Author(s):  
Dezheng Zhao ◽  
Chunyan Qu ◽  
Xinjian Shan ◽  
Roland Bürgmann ◽  
Wenyu Gong ◽  
...  

SUMMARY We investigate the coseismic and post-seismic deformation due to the 6 February 2018 Mw 6.4 Hualien earthquake to gain improved insights into the fault geometries and complex regional tectonics in this structural transition zone. We generate coseismic deformation fields using ascending and descending Sentinel-1A/B InSAR data and GPS data. Analysis of the aftershocks and InSAR measurements reveal complex multifault rupture during this event. We compare two fault model joint inversions of SAR, GPS and teleseismic body waves data to illuminate the involved seismogenic faults, coseismic slip distributions and rupture processes. Our preferred fault model suggests that both well-known active faults, the dominantly left-lateral Milun and Lingding faults, and previously unrecognized oblique-reverse west-dipping and north-dipping detachment faults, ruptured during this event. The maximum slip of ∼1.6 m occurred on the Milun fault at a depth of ∼2–5 km. We compute post-seismic displacement time series using the persistent scatterer method. The post-seismic range-change fields reveal large surface displacements mainly in the near-field of the Milun fault. Kinematic inversions constrained by cumulative InSAR displacements along two tracks indicate that the afterslip occurred on the Milun and Lingding faults and the west-dipping fault just to the east. The maximum cumulative afterslip of 0.4–0.6 m occurred along the Milun fault within ∼7 months of the main shock. The main shock-induced static Coulomb stress changes may have played an important role in driving the afterslip adjacent to coseismic high-slip zones on the Milun, Lingding and west-dipping faults.


2014 ◽  
Vol 919-921 ◽  
pp. 1039-1042
Author(s):  
Liang Lv ◽  
Bin Liang ◽  
Wen Sheng Wang

Seismic displacement response of cable stayed bridge without back stays was studied in this paper. Based on the cable stayed bridge without back stays on Zhenshui Road in Xinmi City, finite element method (FEM) was applied to calculate and analyze natural vibration and peak displacement response of the structure. The results show that with regard to mid-span and consolidation of pier and main tower, uniaxial seismic wave input results in peak displacement response of corresponding direction is bigger than that of any other direction. Peak displacement response of the top of the main tower is bigger than those of mid-span and consolidation of pier and main tower in any seismic wave input cases, which indicates that the top of the tower needs to be focused in the process of design and construction. Seismic wave along triaxial direction has the biggest impact on the structure. Keywords: cable stayed bridge without back stays; seismic displacement response; seismic wave input; peak displacement response


2020 ◽  
pp. 107754632096693
Author(s):  
Jun Dai ◽  
Zhao-Dong Xu ◽  
Pan-Pan Gai ◽  
Xiao Yan

Experimental results show that mechanical behaviors of viscoelastic dampers are greatly affected by ambient temperature. Neglecting the ambient temperature effect will lead to an inaccurate seismic evaluation on viscoelastically damped structures. This study investigates the ambient temperature effect on the seismic performance of viscoelastically damped structures. An efficient algorithm is proposed to solve the seismic response of viscoelastically damped structures at different ambient temperatures based on the time–temperature correspondence. Numerical simulations of a ten-story viscoelastically damped steel frame under historical earthquakes are presented to illustrate the ambient temperature effect on the seismic performance. The results show that the natural frequency decreases with the increase in ambient temperature, whereas the damping ratio change with ambient temperature greatly depends on the viscoelastic damper properties. The seismic displacement reduction, in general, decreases with the increase in ambient temperature. The seismic acceleration reduction with ambient temperature is affected by the viscoelastic damper properties, structural parameters, and earthquakes together.


Sign in / Sign up

Export Citation Format

Share Document