Strength, Deformation, Failure Behavior and Acoustic Emission Locations of Red Sandstone Under Triaxial Compression

Author(s):  
Sheng-Qi Yang
2021 ◽  
pp. 105678952199119
Author(s):  
Kai Yang ◽  
Qixiang Yan ◽  
Chuan Zhang ◽  
Wang Wu ◽  
Fei Wan

To explore the mechanical properties and damage evolution characteristics of carbonaceous shale with different confining pressures and water-bearing conditions, triaxial compression tests accompanied by simultaneous acoustic emission (AE) monitoring were conducted on carbonaceous shale rock specimens. The AE characteristics of carbonaceous shale were investigated, a damage assessment method based on Shannon entropy of AE was further proposed. The results suggest that the mechanical properties of carbonaceous shale intensify with increasing confining pressure and degrade with increasing water content. Moisture in rocks does not only weaken the cohesion but also reduce the internal friction angle of carbonaceous shale. It is observed that AE activities mainly occur in the post-peak stage and the strong AE activities of saturated carbonaceous shale specimens appear at a lower normalized stress level than that of natural-state specimens. The maximum AE counts and AE energy increase with water content while decrease with confining pressure. Both confining pressure and water content induce changes in the proportions of AE dominant frequency bands, but the changes caused by confining pressure are more significant than those caused by water content. The results also indicate that AE entropy can serve as an applicable index for rock damage assessment. The damage evolution process of carbonaceous shale can be divided into two main stages, including the stable damage development stage and the damage acceleration stage. The damage variable increases slowly accompanied by a few AE activities at the first stage, which is followed by a rapid growth along with intense acoustic emission activities at the damage acceleration stage. Moreover, there is a sharp rise in the damage evolution curve for the natural-state specimen at the damage acceleration stage, while the damage variable develops slowly for the saturated-state specimen.


2021 ◽  
Vol 11 (14) ◽  
pp. 6550
Author(s):  
Doyun Jung ◽  
Wonjin Na

The failure behavior of composites under ultraviolet (UV) irradiation was investigated by acoustic emission (AE) testing and Ib-value analysis. AE signals were acquired from woven glass fiber/epoxy specimens tested under tensile load. Cracks initiated earlier in UV-irradiated specimens, with a higher crack growth rate in comparison to the pristine specimen. In the UV-degraded specimen, a serrated fracture surface appeared due to surface hardening and damaged interfaces. All specimens displayed a linearly decreasing trend in Ib-values with an increasing irradiation time, reaching the same value at final failure even when the starting values were different.


2005 ◽  
Vol 41 (1) ◽  
pp. 44-52 ◽  
Author(s):  
V. L. Shkuratnik ◽  
Yu. L. Filimonov ◽  
S. V. Kuchurin

2012 ◽  
Vol 22 (6) ◽  
pp. 775-778 ◽  
Author(s):  
Guangzhi Yin ◽  
Hu Qin ◽  
Gun Huang ◽  
Youchang Lv ◽  
Zhixu Dai

2012 ◽  
Vol 170-173 ◽  
pp. 322-326
Author(s):  
Kui Chen ◽  
Ren Hua Yang ◽  
Tao Xu ◽  
Ya Jing Qi

In order to study the relationship between the design parameters of the shield machine and the strength of rock, the behaviours of rocks under the conventional triaxial compression, the complete stress-strain curves under different confining pressures of three typical rocks, i.e. granite, limestone and red sandstone, were taken out for analysis. From the curves, the values of elastic modulus E and Poisson's ratio μ were gained and the relationships between the following parameters were figured out, which are peak strength versus confining pressure, residual strength versus confining pressure, strain at peak strength versus confining pressure, and strain at residual strength versus confining pressure. According to the values and relationships, the complete stress-strain curves were divided into three parts. For each part, a constitutive equation was established by using the strain softening trilinear elastic-brittle-plastic constitutive model, and all the related parameters in the constitutive equations were also presented, which provide a theoretical foundation for the digital design of the cutter head and cutters of Shield machine.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xizhen Sun ◽  
Fanbao Meng ◽  
Ce Zhang ◽  
Xucai Zhan ◽  
He Jiang

The geometric distribution of initial damages has a great influence on the strength and progressive failure characteristics of the fractured rock mass. Initial damages of the fractured rock were simplified as parallel cracks in different geometric distributions, and then, the progressive failure and acoustic emission (AE) characteristics of specimens under the uniaxial compression loading were analyzed. The red sandstone (brittle materials) specimens with the parallel preexisting cracks by water jet were used in the tests. The energy peak and stress attenuation induced by the energy release of crack initiation were intuitively observed in the test process. Besides, three modes of rock bridge coalescence were obtained, and wing crack was the main crack propagation mode. The wing crack and other cracks were initiated in different loading stages, which were closely related to the energy level of crack initiation. The propagation of wing crack (stable crack) consumed a large amount of energy, and then, the propagation of shear crack, secondary crack, and anti-wing crack (unstable crack) was inhibited. The relationship between the crack propagation mode and the geometric distribution of existing cracks in the specimen was revealed. Meanwhile, the strength characteristic and failure mode of fractured rock with the different geometric distributions of preexisting crack were also investigated. The energy evolution characteristics and crack propagation were also analyzed by numerical modeling (PFC2D).


Sign in / Sign up

Export Citation Format

Share Document