Numerical Simulation and Experimental Validation of A-TIG Welding of 2.25Cr–1Mo Steel

Author(s):  
A. R. Pavan ◽  
B. Arivazhagan ◽  
S. Arun Kumar ◽  
M. Vasudevan ◽  
S. Mahadevan
2004 ◽  
Vol 120 ◽  
pp. 697-704
Author(s):  
L. Depradeux ◽  
J.-F. Jullien

In this study, a parallel experimental and numerical simulation of phenomena that take place in the Heat Affected Zone during TIG welding on 316L stainless steel is presented. The aim of this study is to predict by numerical simulation residual stresses and distortions generated by the welding process. For the experiment, a very simple geometry with reduced dimensions is considered: the specimens are disks, made of 316L. The discs are heated in the central zone in order to reproduce thermo-mechanical cycles that take place in the HAZ during a TIG welding process. During and after thermal cycle, a large quantity of measurement is provided, and allows to compare the results of different numerical models used in the simulations. The comparative thermal and mechanical analysis allows to assess the general ability of the numerical models to describe the structural behavior. The importance of the heat input rate and material characteristics is also investigated.


2015 ◽  
Vol 33 (2) ◽  
pp. 34s-38s ◽  
Author(s):  
Masumi Ito ◽  
Yu Nishio ◽  
Seiichiro Izawa ◽  
Yu Fukunishi ◽  
Masaya Shigeta

2015 ◽  
Vol 57 (7-8) ◽  
pp. 628-634
Author(s):  
Jing Chen ◽  
Liying Wang ◽  
Zhendong Shi ◽  
Zhen Dai ◽  
Meiqing Guo

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 530
Author(s):  
Jerzy Niagaj

The article presents results of comparative A-TIG welding tests involving selected unalloyed and fine-grained steels, as well as high-strength steel WELDOX 1300 and austenitic stainless steel AISI 304L. The tests involved the use of single ingredient activated fluxes (Cr2O3, TiO2, SiO2, Fe2O3, NaF, and AlF3). In cases of carbon and low-alloy steels, the tests revealed that the greatest increase in penetration depth was observed in the steels which had been well deoxidized and purified during their production in steelworks. The tests revealed that among the activated fluxes, the TiO2 and SiO2 oxides always led to an increase in penetration depth during A-TIG welding, regardless of the type and grade of steel. The degree of the aforesaid increase was restricted within the range of 30% to more than 200%.


Sign in / Sign up

Export Citation Format

Share Document