Experimental Investigations of Printing Parameters of Fused Deposition Modeling-Based 3D Printers for Average Surface Roughness

Author(s):  
Apoorv Srivastava ◽  
Jitendra Bhaskar
2020 ◽  
Vol 22 (4) ◽  
pp. 895-908
Author(s):  
M. Ouhsti ◽  
B. El Haddadi ◽  
S. Belhouideg

Abstract3D polymer-based printers have become easily accessible to the public. Usually, the technology used by these 3D printers is Fused Deposition Modelling (FDM). The majority of these 3D printers mainly use acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) to fabricate 3D objects. In order for the printed parts to be useful for specific applications, the mechanical properties of the printed parts must be known. The aim of this study is to determine the tensile strength and elastic modulus of printed materials in polylactic acid (PLA) according to three important printing parameters such as deposition angle, extruder temperature and printing speed. The central composite design (CCD) was used to reduce the number of tensile test experiments. The obtained results show that the mechanical properties of printed parts depend on printing parameters. Empirical models relating response and process parameters are developed. The analysis of variance (ANOVA) was used to test the validity of models relating response and printing parameters. The optimal printing parameters are determined for the desired mechanical properties.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2244
Author(s):  
Yoshiki Ishida ◽  
Daisuke Miura ◽  
Taira Miyasaka ◽  
Akikazu Shinya

Consumer 3D printers have improved considerably due to the evolution of additive manufacturing. This study aimed to examine the accuracy of consumer printers in dental restoration. Cylindrical patterns mimicking a full crown were created and enlarged from 100% to 105% of the original size. Two types of consumer 3D printers, including a fused deposition modeling (FDM) device and a stereolithography (SLA) device, and two types of dental 3D printers, including a multi-jet device and an SLA device, were used to fabricate the patterns. Then, the outer and inner diameters and depths, and surface roughness of the patterns were measured. The changing rates of the outer diameter of models created using dental printers were significantly smaller than those of the models created using consumer printers (p < 0.05). Significantly greater surface roughness was obtained in the tooth axis of the model fabricated using the consumer FDM device (p < 0.05). However, no significant differences were observed on the surface roughness of both axes between the consumer SLA device and the dental devices (p > 0.05). However, FDM showed larger surface roughness than dental devices in both axes (p < 0.05). Thus, the SLA consumer printer can be applied to fabricate resin patterns with enlargement editing of 1–3% along the horizontal axis.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1382 ◽  
Author(s):  
Mercedes Pérez ◽  
Gustavo Medina-Sánchez ◽  
Alberto García-Collado ◽  
Munish Gupta ◽  
Diego Carou

The present paper shows an experimental study on additive manufacturing for obtaining samples of polylactic acid (PLA). The process used for manufacturing these samples was fused deposition modeling (FDM). Little attention to the surface quality obtained in additive manufacturing processes has been paid by the research community. So, this paper aims at filling this gap. The goal of the study is the recognition of critical factors in FDM processes for reducing surface roughness. Two different types of experiments were carried out to analyze five printing parameters. The results were analyzed by means of Analysis of Variance, graphical methods, and non-parametric tests using Spearman’s ρ and Kendall’s τ correlation coefficients. The results showed how layer height and wall thickness are the most important factors for controlling surface roughness, while printing path, printing speed, and temperature showed no clear influence on surface roughness.


2021 ◽  
Vol 896 ◽  
pp. 29-37
Author(s):  
Ján Milde ◽  
František Jurina ◽  
Jozef Peterka ◽  
Patrik Dobrovszký ◽  
Jakub Hrbál ◽  
...  

The article focused on the influence of part orientation on the surface roughness of cuboid parts during the process of fabricating by FDM technology. The components, in this case, is simple cuboid part with the dimensions 15 mm x 15mm x 30 mm. A geometrical model is defined that considers the shape of the material filaments after deposition, to define a theoretical roughness profile, for a certain print orientation angle. Five different print orientations in the X-axis of the cuboid part were set: 0°, 30°, 45°, 60°, and 90°. According to previous research in the field of FDM technology by the author, the internal structure (infill) was set at the value of 70%. The method of 3D printing was the Fused Deposition Modeling (FDM) and the material used in this research was thermoplastic ABS (Acrylonitrile butadiene styrene). For each setting, there were five specimens (twenty five prints in total). Prints were fabricated on a Zortrax M200 3D printer. After the 3D printing, the surface “A” was investigated by portable surface roughness tester Mitutoyo SJ-210. Surface roughness in the article is shown in the form of graphs (Fig.7). Results show increase in part roughness with increasing degree of part orientation. When the direction of applied layers on the measured surface was horizontal, significant improvement in surface roughness was observed. Findings in this paper can be taken into consideration when designing parts, as they can contribute in achieving lower surface roughness values.


2020 ◽  
Author(s):  
Muhammad Salman Mustafa ◽  
Muhammad Qasim Zafar ◽  
Muhammad Arslan Muneer ◽  
Muhammad Arif ◽  
Farrukh Arsalan Siddiqui ◽  
...  

Abstract Fused Deposition Modeling (FDM) is a widely adopted additive manufacturing process to produce complex 3D structures and it is typically used in the fabrication of biodegradable materials e.g. PLA/PHA for biomedical applications. However, FDM as a fabrication process for such material needs to be optimized to enhance mechanical properties. In this study, dogbone and notched samples are printed with the FDM process to determine optimum values of printing parameters for superior mechanical properties. The effect of layer thickness, infill density, and print bed temperature on mechanical properties is investigated by applying response surface methodology (RSM). Optimum printing parameters are identified for tensile and impact strength and an empirical relation has been formulated with response surface methodology (RSM). Furthermore, the analysis of variance (ANOVA) was performed on the experimental results to determine the influence of the process parameters and their interactions. ANOVA results demonstrate that 44.7% infill density, 0.44 mm layer thickness, and 20C° printing temperatures are the optimum values of printing parameters owing to improved tensile and impact strength respectively. The experimental results were found in strong agreement with the predicted theoretical results.


2021 ◽  
pp. 251659842110311
Author(s):  
Shrikrishna Pawar ◽  
Dhananjay Dolas1

Fused deposition modeling (FDM) is one of the most commonly used additive manufacturing (AM) technologies, which has found application in industries to meet the challenges of design modifications without significant cost increase and time delays. Process parameters largely affect the quality characteristics of AM parts, such as mechanical strength and surface finish. This article aims to optimize the parameters for enhancing flexural strength and surface finish of FDM parts. A total of 18 test specimens of polycarbonate (PC)-ABS (acrylonitrile–butadiene–styrene) material are printed to analyze the effect of process parameters, viz. layer thickness, build orientation, and infill density on flexural strength and surface finish. Empirical models relating process parameters with responses have been developed by using response surface regression and further analyzed by analysis of variance. Main effect plots and interaction plots are drawn to study the individual and combined effect of process parameters on output variables. Response surface methodology was employed to predict the results of flexural strength 48.2910 MPa and surface roughness 3.5826 µm with an optimal setting of parameters of 0.14-mm layer thickness and 100% infill density along with horizontal build orientation. Experimental results confirm infill density and build orientation as highly significant parameters for impacting flexural strength and surface roughness, respectively.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nitin Dixit ◽  
Varun Sharma ◽  
Pradeep Kumar

Purpose The surface roughness of additively manufactured parts is usually found to be high. This limits their use in industrial and biomedical applications. Therefore, these parts required post-processing to improve their surface quality. The purpose of this study is to finish three-dimensional (3D) printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) parts using abrasive flow machining (AFM). Design/methodology/approach A hydrogel-based abrasive media has been developed to finish 3D printed parts. The developed abrasive media has been characterized for its rheology and thermal stability using sweep tests, thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The ABS and PLA cylindrical parts have been prepared using fused deposition modeling (FDM) and finished using AFM. The experiments were designed using Taguchi (L9 OA) method. The effect of process parameters such as extrusion pressure (EP), layer thickness (LT) and abrasive concentration (AC) was investigated on the amount of material removed (MR) and percentage improvement in surface roughness (%ΔRa). Findings The developed abrasive media was found to be effective for finishing FDM printed parts using AFM. The microscope images of unfinished and finished showed a significant improvement in surface topography of additively manufactures parts after AFM. The results reveal that AC is the most significant parameter during the finishing of ABS parts. However, EP and AC are the most significant parameters for MR and %ΔRa, respectively, during the finishing of PLA parts. Practical implications The FDM technology has applications in the biomedical, electronics, aeronautics and defense sectors. PLA has good biodegradable and biocompatible properties, so widely used in biomedical applications. The ventilator splitters fabricated using FDM have a profile similar to the shape used in the present study. Research limitations/implications The present study is focused on finishing FDM printed cylindrical parts using AFM. Future research may be done on the AFM of complex shapes and freeform surfaces printed using different additive manufacturing (AM) techniques. Originality/value An abrasive media consists of xanthan gum, locust bean gum and fumed silica has been developed and characterized. An experimental study has been performed by combining printing parameters of FDM and finishing parameters of AFM. A comparative analysis in MR and %ΔRa has been reported between 3D printed ABS and PLA parts.


Sign in / Sign up

Export Citation Format

Share Document