scholarly journals Exploration of Campus Layout Based on Generative Adversarial Network

Author(s):  
Yubo Liu ◽  
Yihua Luo ◽  
Qiaoming Deng ◽  
Xuanxing Zhou

AbstractThis paper aims to explore the idea and method of using deep learning with a small amount sample to realize campus layout generation. From the perspective of the architect, we construct two small amount sample campus layout data sets through artificial screening with the preference of the specific architects. These data sets are used to train the ability of Pix2Pix model to automatically generate the campus layout under the condition of the given campus boundary and surrounding roads. Through the analysis of the experimental results, this paper finds that under the premise of effective screening of the collected samples, even using a small amount sample data set for deep learning can achieve a good result.

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 245
Author(s):  
Konstantinos G. Liakos ◽  
Georgios K. Georgakilas ◽  
Fotis C. Plessas ◽  
Paris Kitsos

A significant problem in the field of hardware security consists of hardware trojan (HT) viruses. The insertion of HTs into a circuit can be applied for each phase of the circuit chain of production. HTs degrade the infected circuit, destroy it or leak encrypted data. Nowadays, efforts are being made to address HTs through machine learning (ML) techniques, mainly for the gate-level netlist (GLN) phase, but there are some restrictions. Specifically, the number and variety of normal and infected circuits that exist through the free public libraries, such as Trust-HUB, are based on the few samples of benchmarks that have been created from circuits large in size. Thus, it is difficult, based on these data, to develop robust ML-based models against HTs. In this paper, we propose a new deep learning (DL) tool named Generative Artificial Intelligence Netlists SynthesIS (GAINESIS). GAINESIS is based on the Wasserstein Conditional Generative Adversarial Network (WCGAN) algorithm and area–power analysis features from the GLN phase and synthesizes new normal and infected circuit samples for this phase. Based on our GAINESIS tool, we synthesized new data sets, different in size, and developed and compared seven ML classifiers. The results demonstrate that our new generated data sets significantly enhance the performance of ML classifiers compared with the initial data set of Trust-HUB.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3269 ◽  
Author(s):  
Hongmin Gao ◽  
Dan Yao ◽  
Mingxia Wang ◽  
Chenming Li ◽  
Haiyun Liu ◽  
...  

Hyperspectral remote sensing images (HSIs) have great research and application value. At present, deep learning has become an important method for studying image processing. The Generative Adversarial Network (GAN) model is a typical network of deep learning developed in recent years and the GAN model can also be used to classify HSIs. However, there are still some problems in the classification of HSIs. On the one hand, due to the existence of different objects with the same spectrum phenomenon, if only according to the original GAN model to generate samples from spectral samples, it will produce the wrong detailed characteristic information. On the other hand, the gradient disappears in the original GAN model and the scoring ability of a single discriminator limits the quality of the generated samples. In order to solve the above problems, we introduce the scoring mechanism of multi-discriminator collaboration and complete semi-supervised classification on three hyperspectral data sets. Compared with the original GAN model with a single discriminator, the adjusted criterion is more rigorous and accurate and the generated samples can show more accurate characteristics. Aiming at the pattern collapse and diversity deficiency of the original GAN generated by single discriminator, this paper proposes a multi-discriminator generative adversarial networks (MDGANs) and studies the influence of the number of discriminators on the classification results. The experimental results show that the introduction of multi-discriminator improves the judgment ability of the model, ensures the effect of generating samples, solves the problem of noise in generating spectral samples and can improve the classification effect of HSIs. At the same time, the number of discriminators has different effects on different data sets.


Author(s):  
Sebastian Meister ◽  
Nantwin Möller ◽  
Jan Stüve ◽  
Roger M. Groves

AbstractIn the aerospace industry, the Automated Fiber Placement process is an established method for producing composite parts. Nowadays the required visual inspection, subsequent to this process, typically takes up to 50% of the total manufacturing time and the inspection quality strongly depends on the inspector. A Deep Learning based classification of manufacturing defects is a possibility to improve the process efficiency and accuracy. However, these techniques require several hundreds or thousands of training data samples. Acquiring this huge amount of data is difficult and time consuming in a real world manufacturing process. Thus, an approach for augmenting a smaller number of defect images for the training of a neural network classifier is presented. Five traditional methods and eight deep learning approaches are theoretically assessed according to the literature. The selected conditional Deep Convolutional Generative Adversarial Network and Geometrical Transformation techniques are investigated in detail, with regard to the diversity and realism of the synthetic images. Between 22 and 166 laser line scan sensor images per defect class from six common fiber placement inspection cases are utilised for tests. The GAN-Train GAN-Test method was applied for the validation. The studies demonstrated that a conditional Deep Convolutional Generative Adversarial Network combined with a previous Geometrical Transformation is well suited to generate a large realistic data set from less than 50 actual input images. The presented network architecture and the associated training weights can serve as a basis for applying the demonstrated approach to other fibre layup inspection images.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lei Wang ◽  
Qian Li ◽  
Jin Qin

Error diagnosis and detection have become important in modern production due to the importance of spinning equipment. Artificial neural network pattern recognition methods are widely utilized in rotating equipment fault detection. These methods often need a large quantity of sample data to train the model; however, sample data (especially fault samples) are uncommon in engineering. Preliminary work focuses on dimensionality reduction for big data sets using semisupervised methods. The rotary machine’s polar coordinate signal is used to build a GAN network structure. ANN and tiny samples are utilized to identify DCGAN model flaws. The time-conditional generative adversarial network is proposed for one-dimensional vibration signal defect identification under data imbalance. Finally, auxiliary samples are gathered under similar conditions, and CCNs learn about target sample characteristics. Convolutional neural networks handle the problem of defect identification with small samples in different ways. In high-dimensional data sets with nonlinearities, low fault type recognition rates and fewer marked fault samples may be addressed using kernel semisupervised local Fisher discriminant analysis. The SELF method is used to build the optimum projection transformation matrix from the data set. The KNN classifier then learns low-dimensional features and detects an error kind. Because DCGAN training is unstable and the results are incorrect, an improved deep convolutional generative adversarial network (IDCGAN) is proposed. The tests indicate that the IDCGAN generates more real samples and solves the problem of defect identification in small samples. Time-conditional generation adversarial network data improvement lowers fault diagnosis effort and deep learning model complexity. The TCGAN and CNN are combined to provide superior fault detection under data imbalance. Modeling and experiments demonstrate TCGAN’s use and superiority.


2021 ◽  
Vol 13 (18) ◽  
pp. 3554
Author(s):  
Xiaowei Hu ◽  
Weike Feng ◽  
Yiduo Guo ◽  
Qiang Wang

Even though deep learning (DL) has achieved excellent results on some public data sets for synthetic aperture radar (SAR) automatic target recognition(ATR), several problems exist at present. One is the lack of transparency and interpretability for most of the existing DL networks. Another is the neglect of unknown target classes which are often present in practice. To solve the above problems, a deep generation as well as recognition model is derived based on Conditional Variational Auto-encoder (CVAE) and Generative Adversarial Network (GAN). A feature space for SAR-ATR is built based on the proposed CVAE-GAN model. By using the feature space, clear SAR images can be generated with given class labels and observation angles. Besides, the feature of the SAR image is continuous in the feature space and can represent some attributes of the target. Furthermore, it is possible to classify the known classes and reject the unknown target classes by using the feature space. Experiments on the MSTAR data set validate the advantages of the proposed method.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 256
Author(s):  
Thierry Pécot ◽  
Alexander Alekseyenko ◽  
Kristin Wallace

Deep learning has revolutionized the automatic processing of images. While deep convolutional neural networks have demonstrated astonishing segmentation results for many biological objects acquired with microscopy, this technology's good performance relies on large training datasets. In this paper, we present a strategy to minimize the amount of time spent in manually annotating images for segmentation. It involves using an efficient and open source annotation tool, the artificial increase of the training data set with data augmentation, the creation of an artificial data set with a conditional generative adversarial network and the combination of semantic and instance segmentations. We evaluate the impact of each of these approaches for the segmentation of nuclei in 2D widefield images of human precancerous polyp biopsies in order to define an optimal strategy.


2020 ◽  
Vol 34 (02) ◽  
pp. 1725-1732 ◽  
Author(s):  
Danyang Liu ◽  
Juntao Li ◽  
Meng-Hsuan Yu ◽  
Ziming Huang ◽  
Gongshen Liu ◽  
...  

Automated story generation is a challenging task which aims to automatically generate convincing stories composed of successive plots correlated with consistent characters. Most recent generation models are built upon advanced neural networks, e.g., variational autoencoder, generative adversarial network, convolutional sequence to sequence model. Although these models have achieved prompting results on learning linguistic patterns, very few methods consider the attributes and prior knowledge of the story genre, especially from the perspectives of explainability and consistency. To fill this gap, we propose a character-centric neural storytelling model, where a story is created encircling the given character, i.e., each part of a story is conditioned on a given character and corresponded context environment. In this way, we explicitly capture the character information and the relations between plots and characters to improve explainability and consistency. Experimental results on open dataset indicate that our model yields meaningful improvements over several strong baselines on both human and automatic evaluations.


2021 ◽  
Vol 23 (4) ◽  
pp. 745-756
Author(s):  
Yi Lyu ◽  
Yijie Jiang ◽  
Qichen Zhang ◽  
Ci Chen

Remaining useful life (RUL) prediction plays a crucial role in decision-making in conditionbased maintenance for preventing catastrophic field failure. For degradation-failed products, the data of performance deterioration process are the key for lifetime estimation. Deep learning has been proved to have excellent performance in RUL prediction given that the degradation data are sufficiently large. However, in some applications, the degradation data are insufficient, under which how to improve the prediction accuracy is yet a challenging problem. To tackle such a challenge, we propose a novel deep learning-based RUL prediction framework by amplifying the degradation dataset. Specifically, we leverage the cycle-consistent generative adversarial network to generate the synthetic data, based on which the original degradation dataset is amplified so that the data characteristics hidden in the sample space could be captured. Moreover, the sliding time window strategy and deep bidirectional long short-term memory network are employed to complete the RUL prediction framework. We show the effectiveness of the proposed method by running it on the turbine engine data set from the National Aeronautics and Space Administration. The comparative experiments show that our method outperforms a case without the use of the synthetically generated data.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Meng Wu ◽  
Adim Payshanbiev ◽  
Qing Zhao ◽  
Wenzong Yang

AbstractTomb murals are the special kind of murals that are buried underground. Due to the narrow exit of the tomb passage, the tomb murals were excavated by dividing the whole mural into blocks, which made lots of information missing between the blocks. The digital restoration technology Image inpainting uses the edge information around the missing parts to spread the information inside of the defect area and fills the information from the outside to the inside. But it is not suitable for filling the missing parts between the tomb mural blocks. Because these parts are large for exemplar-based inpainting which may make texture dislocation and for PDE which may make cartoon blur. It is a need to generate the information outwards to complete the information. The generative adversarial network uses deep learning training by the murals remains to generate the information from inside to outside, but the typical GAN doesn‘t have a good nonlinear feature. This paper provided a generating technology based on the deep convolution generative adversarial network to rebuild the missing information between the tomb mural blocks. It built the training data set of the simulation platform with Keras and designed a whole mural generation scheme based on DCGAN. In order to get better generated results to avoid the bad artifacts; it adds the nonlinear layers by choosing 13 layers convolution and 2 deconvolution layers of the generator and contained 5 layers convolution discriminator; it designed a new phased nonlinear loss function by using Pycharm pretreatment for Numpy array file data sets; finally, it completed the generate tomb mural information to obtain the good simulation effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mingjie Li ◽  
Zichi Wang ◽  
Haoxian Song ◽  
Yong Liu

The deep learning based image steganalysis is becoming a serious threat to modification-based image steganography in recent years. Generation-based steganography directly produces stego images with secret data and can resist the advanced steganalysis algorithms. This paper proposes a novel generation-based steganography method by disguising the stego images into the kinds of images processed by normal operations (e.g., histogram equalization and sharpening). Firstly, an image processing model is trained using DCGAN and WGAN-GP, which is used to generate the images processed by normal operations. Then, the noise mapped by secret data is inputted into the trained model, and the obtained stego image is indistinguishable from the processed image. In this way, the steganographic process can be covered by the process of image processing, leaving little embedding trace in the process of steganography. As a result, the security of steganography is guaranteed. Experimental results show that the proposed scheme has better security performance than the existing steganographic methods when checked by state-of-the-art steganalytic tools, and the superiority and applicability of the proposed work are shown.


Sign in / Sign up

Export Citation Format

Share Document