scholarly journals Super Composite: Carbon Fibre Infused 3D Printed Tectonics

Author(s):  
H. Mohamed ◽  
D. W. Bao ◽  
R. Snooks

AbstractThis research posits an innovative process of embedding carbon fibre as the primary structure within large-scale polymer 3D printed intricate architectural forms. The design and technical implications of this research are explored and demonstrated through two proto-architectural projects, Cloud Affects and Unclear Cloud, developed by the RMIT Architecture Snooks Research Lab. These projects are designed through a tectonic approach that we describe as a super composite – an approach that creates a compression of tectonics through algorithmic self-organisation and advanced manufacturing. Framed within a critical view of the lineage of polymer 3D printing and high tech fibres in the field of architectural design, the research outlines the limitations of existing robotic processes employed in contemporary carbon fibre fabrication. In response, the paper proposes an approach we describe as Infused Fibre Reinforced Plastic (IFRP) as a novel fabrication method for intricate geometries. This method involves 3D printing of sacrificial formwork conduits within the skin of complex architectural forms that are infused with continuous carbon fibre structural elements. Through detailed observation and critical review of Cloud Affects and Unclear Cloud (Fig. 2), the paper assesses innovations and challenges of this research in areas including printing, detailing, structural analysis and FEA modelling. The paper notes how these techniques have been refined through the iterative design of the two projects, including the development of fibre distribution mapping to optimise the structural performance.

2021 ◽  
Author(s):  
Yuki Nakagawa ◽  
Ken-ichiro Mori ◽  
Masahiko Yoshino

Abstract A laser-assisted 3D printing process of carbon fibre reinforced plastic parts with sandwiching fibres between plastic layers was developed to improve the bond strength of the fibres to the plastic layers. In this process, the bunded carbon fibres were placed on the 3D-printed lower layer, then the upper plastic layer was deposited on the fibres, and the two layers with sandwiching the fibres were laser-heated. The heating temperature at the interface between the fibres and the plastic layer was changed by the colour of the plastic layer because of the transmittance and absorption of laser beam, and the translucent layer was most appropriate. Not only the strength but also the rigidity of the 3D-printed carbon fibre reinforced plastic part was improved by laser heating. Carbon fibre reinforced plastic parts having closed cross-section was manufactured, and strengthened by optimisation sandwiched fibre orientation. A tailored part locally reinforced by carbon fibres was 3D-printed.


2021 ◽  
Vol 27 (3) ◽  
pp. 465-474
Author(s):  
Martin Krčma ◽  
David Škaroupka ◽  
Petr Vosynek ◽  
Tomáš Zikmund ◽  
Jozef Kaiser ◽  
...  

Purpose This paper aims to focus on the evaluation of a polymer concrete as a three-dimensional (3D) printing material. An associated company has developed plastic concrete made from reused unrecyclable plastic waste. Its intended use is as a construction material. Design/methodology/approach The concrete mix, called PolyBet, composed of polypropylene and glass sand, is printed by the fused deposition modelling process. The process of material and parameter selection is described. The mechanical properties of the filled material were compared to its cast state. Samples were made from castings and two different orientations of 3D-printed parts. Three-point flex tests were carried out, and the area of the break was examined. Computed tomography of the samples was carried out. Findings The influence of the 3D printing process on the material was evaluated. The mechanical performance of the longitudinal samples was close to the cast state. There was a difference in the failure mode between the states, with cast parts exhibiting a tougher behaviour, with fractures propagating in a stair-like manner. The 3D-printed samples exhibited high degrees of porosity. Originality/value The results suggest that the novel material is a good fit for 3D printing, with little to no degradation caused by the process. Layer adhesion was shown to be excellent, with negligible effect on the finished part for the longitudinal orientation. That means, if large-scale testing of buildability is successful, the material is a good fit for additive manufacturing of building components and other large-scale structures.


History of additive manufacturing started in the 1980s in Japan. Stereolithography was invented first in 1983. After that tens of other techniques were invented under the common name 3D printing. When stereolithography was invented rapid prototyping did not exists. Tree years later new technique was invented: selective laser sintering (SLS). First commercial SLS was in 1990. At the end of 20t century, first bio-printer was developed. Using bio materials, first kidney was 3D printed. Ten years later, first 3D Printer in the kit was launched to the market. Today we have large scale printers that printed large 3D objects such are cars. 3D printing will be used for printing everything everywhere. List of pros and cons questions rising every day.


Author(s):  
Yifan Yang ◽  
Yutaka Ohtake ◽  
Hiromasa Suzuki

Abstract Making arts and crafts is an essential application of 3D printing. However, typically, 3D printers have limited resolution; thus, the perceptual quality of the result is always low, mainly when the input mesh is a relief. To address this problem using existing 3D printing technology, we only operate the shape of the input triangle mesh. To improve the perceptual quality of a 3D printed product, we propose an integrated mesh processing that comprises feature extraction, 3D print preview, feature preservation test, and shape enhancement. The proposed method can identify and enlarge features that need to be enhanced without large-scale deformation. Besides, to improve ease of use, intermediate processes are visualized via user interfaces. To evaluate the proposed method, the processed triangle meshes are 3D printed. The effectiveness of the proposed approach is confirmed by comparing photographs of the original 3D prints and the enhanced 3D prints.


2021 ◽  
Author(s):  
◽  
William Rykers

<p>This research is focused towards the use of large-scale FDM 3D printing within the automotive industry, specifically to design a bespoke habitable sleeping environment attached to a Range Rover Sport. 3D printing has risen as a viable form of manufacturing in comparison with conventional methods. Allowing the designer to capitalise on digital data, enabling specific tailored designs to any vehicle model. This thesis asks the question “Can design use the properties of digital vehicle data in conjunction with large-scale FDM 3D printing to sustainably produce bespoke habitable sleeping environments for an automotive context?” Further to this, FDM 3D printing at a large-scale has so far not been explored extensively within the automotive industry.  FDM 3D printing is an emerging technology that possesses the ability to revolutionise the automotive industry, through expansion of functionality, customisation and aesthetic that is currently limited by traditional manufacturing methods. Presently, vehicle models are digitally mapped, creating an opportunity for customisation and automatic adaption through computer aided drawing (CAD). This thesis takes advantage of the digitisation of the automotive industry through 3D modelling and renders as a design and development tool.   This project explored a variety of methods to demonstrate a vision of a 3D printed habitable sleeping environment. The primary methodologies employed in this research project are Research for Design (RfD) and Research through Design (RtD). These methodologies work in conjunction to combine design theory and practice as a genuine method of inquiry. The combination of theory and design practice has ensued in the concepts being analysed, reflected and discussed according to a reflective analysis design approach. The design solution resulted in an innovative and luxury bespoke habitable sleeping space to be FDM 3D printed. Through the use of digitisation, the sleeping capsule was cohesively tailored to the unique design language of the Range Rover Sport. This thesis resulted in various final outputs including a 1:1 digital model, high quality renders, accompanied by small scale prototypes, photographs and sketch models.</p>


2021 ◽  
Vol 13 (21) ◽  
pp. 11978
Author(s):  
Hadeer Abdalla ◽  
Kazi Parvez Fattah ◽  
Mohamed Abdallah ◽  
Adil K. Tamimi

3D printing, is a newly adopted technique in the construction sector with the aim to improve the economics and alleviate environmental impacts. This study assesses the eco-efficiency of 3D printing compared to conventional construction methods in large-scale structural fabrication. A single-storey 3D-printed house was selected in the United Arab Emirates to conduct the comparative assessment against traditional concrete construction. The life cycle assessment (LCA) framework is utilized to quantify the environmental loads of raw materials extraction and manufacturing, as well as energy consumption during construction and operation phases. The economics of the selected structural systems were investigated through life cycle costing analysis (LCCA), that included mainly the construction costs and energy savings. An eco-efficiency analysis was employed to aggregate the results of the LCA and LCCA into a single framework to aid in decision making by selecting the optimum and most eco-efficient alternative. The findings revealed that houses built using additive manufacturing and 3D printed materials were more environmentally favourable. The conventional construction method had higher impacts when compared to the 3D printing method with global warming potential of 1154.20 and 608.55 kg CO2 eq, non-carcinogenic toxicity 675.10 and 11.9 kg 1,4-DCB, and water consumption 233.35 and 183.95 m3, respectively. The 3D printed house was also found to be an economically viable option, with 78% reduction in the overall capital costs when compared to conventional construction methods. The combined environmental and economic results revealed that the overall process of the 3D-printed house had higher eco efficiency compared to concrete-based construction. The main results of the sensitivity analysis revealed that up to 90% of the environmental impacts in 3D printing mortars can be mitigated with decreasing cement ratios.


Author(s):  
Olivier Cremens ◽  
Benoit Meulewaeter ◽  
Luai Al Kurdi ◽  
Sami Bishara

<p>Generally, 3D-printed buildings combine 3D-printing technology with reinforced concrete using 3D- printed elements as lost formwork or cladding elements rather than structural elements.</p><p>Thanks to the joint efforts of the Project Developer, Lead design and Construction Supervision Consultant (AECOM) and BESIX3D (Contractor) the first operational building with structural load bearing 3D-printed walls will be completed by early 2020 in Abu Dhabi (U.A.E).</p><p>The engineering design approach is based on ACI codes together with various tests results. From concept to execution, all steps focused on successfully integrating 3D-printed structural elements to minimize manpower, material and equipment to improve the sustainability of this pilot project leading the way for more durable construction in the future.</p>


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1464
Author(s):  
Konstantinos Paraskevoudis ◽  
Panagiotis Karayannis ◽  
Elias P. Koumoulos

This work describes a novel methodology for the quality assessment of a Fused Filament Fabrication (FFF) 3D printing object during the printing process through AI-based Computer Vision. Specifically, Neural Networks are developed for identifying 3D printing defects during the printing process by analyzing video captured from the process. Defects are likely to occur in 3D printed objects during the printing process, with one of them being stringing; they are mostly correlated to one of the printing parameters or the object’s geometries. The defect stringing can be on a large scale and is usually located in visible parts of the object by a capturing camera. In this case, an AI model (Deep Convolutional Neural Network) was trained on images where the stringing issue is clearly displayed and deployed in a live environment to make detections and predictions on a video camera feed. In this work, we present a methodology for developing and deploying deep neural networks for the recognition of stringing. The trained model can be successfully deployed (with appropriate assembly of required hardware such as microprocessors and a camera) on a live environment. Stringing can be then recognized in line with fast speed and classification accuracy. Furthermore, this approach can be further developed in order to make adjustments to the printing process. Via this, the proposed approach can either terminate the printing process or correct parameters which are related to the identified defect.


Sign in / Sign up

Export Citation Format

Share Document