Development of Tractor Seat Suspension System for Improving the Ride Comfort

Author(s):  
Deep Shukla ◽  
Saurabh Modi ◽  
Reena Trivedi
2016 ◽  
Vol 35 (4) ◽  
pp. 264-278 ◽  
Author(s):  
Donghong Ning ◽  
Shuaishuai Sun ◽  
Jiawei Zhang ◽  
Haiping Du ◽  
Weihua Li ◽  
...  

This paper presents the design, fabrication and testing of an innovative active seat suspension system for heavy-duty vehicles. Rather than using conventional linear actuators, such as hydraulic cylinders or linear motors, which need to be well maintained and are always expensive when high force outputs are required, the proposed seat suspension system directly applies a rotary motor in order to provide the required active actuation, without changing the basic structure of the existing off-the-shelf seat suspension. A gear reducer is also applied to amplify the output torque of the motor so that a high output torque can be achieved using a low rated power motor. A static output feedback [Formula: see text] controller with friction compensation is designed to actively reduce seat vibration. Experiments are carried out to test the fabricated suspension prototype. The experimental results show that this type of seat suspension can achieve greater ride comfort in the frequency range of 2–6 Hz than a passive seat suspension. The newly designed active seat suspension is much more cost effective and can be suitable for heavy-duty vehicles.


2017 ◽  
Vol 67 (1) ◽  
pp. 23-28
Author(s):  
Ján Danko ◽  
Tomáš Milesich ◽  
Jozef Bucha

Abstract The paper deals with the modelling of a passenger car seat suspension system. Currently, vehicle safety and ride comfort are one of the most important factors of vehicle design. This article analyses a mathematical model of the passenger car seat suspension system. Furthermore, experimental measurements of the passenger car seat suspension system are performed. Utilizing the experimental data, model parameters are identified. From the chosen mathematical model a simulation model in constructed in Matlab is designed. In this simulation, the force-velocity and force-displacement characteristics of the passenger car seat suspension system are described. Finally, evaluation of simulated damper characteristics with the characteristics form measured data are performed.


2008 ◽  
Vol 15 (5) ◽  
pp. 493-503 ◽  
Author(s):  
S. Hossein Sadati ◽  
Salar Malekzadeh ◽  
Masood Ghasemi

In this paper, an 8-DOF model including driver seat dynamics, subjected to random road disturbances is used in order to investigate the advantage of active over conventional passive suspension system. Force actuators are mounted parallel to the body suspensions and the driver seat suspension. An optimal control approach is taken in the active suspension used in the vehicle. The performance index for the optimal control design is a quantification of both ride comfort and road handling. To simulate the real road profile condition, stochastic inputs are applied. Due to practical limitations, not all the states of the system required for the state-feedback controller are measurable, and hence must be estimated with an observer. In this paper, to have the best estimation, an optimal Kalman observer is used. The simulation results indicate that an optimal observer-based controller causes both excellent ride comfort and road handling characteristics.


2021 ◽  
Vol 11 (15) ◽  
pp. 6928
Author(s):  
Xin Liao ◽  
Ning Zhang ◽  
Xiaofei Du ◽  
Wanjie Zhang

In this study, to improve the vibration isolation performance of a cab seat and the ride comfort of the driver, we propose a mathematical model for a seat suspension system of a construction machinery cab based on a negative stiffness structure (NSS). First, a static analysis of a seat suspension system is conducted and the different parameters and their influences on the dynamic stiffness are discussed. Thereby, the ideal configuration parameter range of the suspension system is obtained. Moreover, the nonlinear dynamic model of the designed seat suspension system is established. The frequency response and the stability are analyzed by using the HBM method and numerical simulation. The vibration transmissibility characteristics and vibration suppression effects of the seat suspension system are presented in detail. The results show that, as compared with a quasi-zero-stiffness system, the QZS-IE system has higher vibration suppression advantages under large excitation and small damping, as well as lower transmissibility and a wider vibration isolation frequency range. In addition, an inerter element with a larger mass ratio and relatively shorter distance ratio is better for vibration isolation performance of the QZS-IE system in a practical engineering application. The results of this study provide a scientific basis for the design and improvement of a seat suspension system.


Author(s):  
R. Rosli ◽  
Z. Mohamed ◽  
G. Priyandoko

This paper presents a modified intelligent active force control (AFC) control strategy in a semi active seat suspension system. The main actuator studied in this research is the Magneto-rheological (MR) damper. Since a semi-active device like MR damper can only dissipate energy so a modified version of AFC controller is needed. The modified AFC controller main function is to determine the appropriate control force. A Heaviside Step Function (HSF) is used to ensure the MR damper produce the desired damping force according to the control force generated by AFC controller. The phenomenological Bouc-Wen is used to study the effectiveness of the new AFC controller taking into account the dynamic response of the damper. Sinusoidal signals simulated as vibration sources are applied to the seat suspension system to investigate the improvement of ride comfort as well as to ascertain the new AFC controller robustness. Comparison of body acceleration signals from the passive suspension with AFC controller semi active seat suspension system shows up to to 45% improvement to the occupant ride comfort under different vibration intensities.


2011 ◽  
Vol 2-3 ◽  
pp. 1067-1070
Author(s):  
Hai Jun Xing ◽  
Shao Pu Yang ◽  
Yong Jun Shen

This research aims at the vibration control of vehicle seat suspension system. A three degree of freedom quarter vehicle model is used for semi-active control system in which a magnetorheological damper (MRD) is installed at the position between the vehicle body and the seat. A fully active linear quadratic regulator (LQR) control strategy is used to determine the optimized control force which is then matched by MRD to compute the semi-active control result. Computation result proves that semi-active control with MRD can alleviate the vehicle seat acceleration to improve ride comfort.


Author(s):  
H. Metered ◽  
P. Bonello ◽  
S. O. Oyadiji

Seat suspension system is critical to the ride comfort experience of a vehicle’s driver and passengers. The use of a magnetorheological (MR) damper in a seat suspension system has been shown to offer significant benefits in this regard. Most research on seat MR dampers has applied active control strategies to command the MR damper, which is an inherently semi-active device. This paper introduces a more suitable semi-active control strategy for an MR damper used in a seat suspension, enabling more effective control. The proposed control system comprises a system controller that computes the desired damping force using a sliding mode control algorithm, and a neural-based damper controller that provides a direct estimation of the command voltage that is required to track the desired damping force. The seat suspension system is approximated by base-excited single degree of freedom system. The proposed semi-active seat suspension is compared to a passive seat suspension for prescribed base displacements. These inputs are representative of the vibration of the sprung mass of a passive or semi-active quarter-vehicle suspension under bump or random-profile road disturbance. Control performance criteria such as seat travel distance and seat acceleration are evaluated in time and frequency domains, in order to quantify the effectiveness of proposed semi-active control system. The simulated results reveal that the use of semi-active control in the seat suspension provides a significant improvement in ride comfort.


2015 ◽  
Vol 23 (8) ◽  
pp. 1248-1266 ◽  
Author(s):  
S Gad ◽  
H Metered ◽  
A Bassuiny ◽  
AM Abdel Ghany

Recently, fractional-order proportional–integral–derivative (FOPID) controllers are demonstrated as a general form of the classical proportional–integral–derivative (PID) using fractional calculus. In FOPID controller, the orders of the derivative and integral portions are not integers which offer more flexibility in succeeding control objectives. This paper proposes a multi-objective genetic algorithm (MOGA) to optimize the FOPID controller gains to enhance the ride comfort of heavy vehicles. The usage of magnetorheological (MR) damper in seat suspension system provides considerable benefits in this area. The proposed semi-active control algorithm consists of a system controller that determines the desired damping force using a FOPID controller tuned using a MOGA, and a continuous state damper controller that calculates the input voltage to the damper coil. A mathematical model of a six degrees–of–freedom seat suspension system incorporating human body model using an MR damper is derived and simulated using Matlab/Simulink software. The proposed semi–active MR seat suspension is compared to the classical PID, optimum PID tuned using genetic algorithm (GA) and passive seat suspension systems for predetermined chassis displacement. System performance criteria are examined in both time and frequency domains, in order to verify the success of the proposed FOPID algorithm. The simulation results prove that the proposed FOPID controller of MR seat suspension offers a superior performance of the ride comfort over the integer controllers.


2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110449
Author(s):  
Xin Liao ◽  
Xiaofei Du ◽  
Shaohua Li

In order to improve the vibration isolation performance of cab seat and ride comfort of the driver, a seat suspension structure of construction machinery cab is proposed based on negative stiffness structure (NSS) in this paper. The influences of different parameters of suspension system on dynamic stiffness are analyzed. The configuration parameter range of suspension system is obtained. Then, the nonlinear dynamic equation of the seat suspension system is established and the NSS optimization model is proposed. The vibration transmissibility characteristics of suspension structure are analyzed by different methods. The results show that the displacement and acceleration amplitude of optimized seat suspension system are obviously reduced, and the VDV and RMS in the vertical vibration direction for the seat are respectively decreased by 87% and 86%. The vibration transmissibility rate SEAT and the Ttrans are both decreased. Moreover, the peak frequencies of the vibration transmitted to the driver are not near the key frequency values which are easy to cause human discomfort. It indicates that the design of seat suspension system has no effect on the health condition of the driver after being vibrated. The advantages of vibration isolation performance of the designed NSS suspension system are demonstrated, improving the driver’s ride comfort and the working environment.


Sign in / Sign up

Export Citation Format

Share Document