scholarly journals Nonlinear Model of the Passenger Car Seat Suspension System

2017 ◽  
Vol 67 (1) ◽  
pp. 23-28
Author(s):  
Ján Danko ◽  
Tomáš Milesich ◽  
Jozef Bucha

Abstract The paper deals with the modelling of a passenger car seat suspension system. Currently, vehicle safety and ride comfort are one of the most important factors of vehicle design. This article analyses a mathematical model of the passenger car seat suspension system. Furthermore, experimental measurements of the passenger car seat suspension system are performed. Utilizing the experimental data, model parameters are identified. From the chosen mathematical model a simulation model in constructed in Matlab is designed. In this simulation, the force-velocity and force-displacement characteristics of the passenger car seat suspension system are described. Finally, evaluation of simulated damper characteristics with the characteristics form measured data are performed.

2020 ◽  
Vol 10 (15) ◽  
pp. 5220 ◽  
Author(s):  
Jianjun Wang ◽  
Jingyi Zhao ◽  
Wenlei Li ◽  
Xing Jia ◽  
Peng Wei

In order to ensure the ride comfort of a hydraulic transport vehicle in transportation, it is important to account for the effects of the suspension system. In this paper, an improved hydraulic suspension system based on a reasonable setting of the accumulator was proposed for a heavy hydraulic transport vehicle. The hydraulic transport vehicle was a multi-degree nonlinear system, and the establishment of an appropriate vehicle dynamical model was the basis for the improvement of the hydraulic suspension system. The hydraulic suspension system was analyzed, and a mathematical model of the hydraulic suspension system with accumulator established and then analyzed. The results revealed that installing the appropriate accumulator can absorb the impact pressure on the vehicle, while a hydraulic suspension system with an accumulator can be designed. Further, it was proved that a reasonable setting for the accumulator can reduce the impact force on the transport vehicle through simulation, and the optimal accumulator parameters can be obtained. Finally, an experiment in the field was set up and carried out, and the experimental results presented to prove the viability of the proposed method.


2016 ◽  
Vol 35 (4) ◽  
pp. 264-278 ◽  
Author(s):  
Donghong Ning ◽  
Shuaishuai Sun ◽  
Jiawei Zhang ◽  
Haiping Du ◽  
Weihua Li ◽  
...  

This paper presents the design, fabrication and testing of an innovative active seat suspension system for heavy-duty vehicles. Rather than using conventional linear actuators, such as hydraulic cylinders or linear motors, which need to be well maintained and are always expensive when high force outputs are required, the proposed seat suspension system directly applies a rotary motor in order to provide the required active actuation, without changing the basic structure of the existing off-the-shelf seat suspension. A gear reducer is also applied to amplify the output torque of the motor so that a high output torque can be achieved using a low rated power motor. A static output feedback [Formula: see text] controller with friction compensation is designed to actively reduce seat vibration. Experiments are carried out to test the fabricated suspension prototype. The experimental results show that this type of seat suspension can achieve greater ride comfort in the frequency range of 2–6 Hz than a passive seat suspension. The newly designed active seat suspension is much more cost effective and can be suitable for heavy-duty vehicles.


Author(s):  
P.P.D. Rao ◽  
S. Palli ◽  
R.C. Sharma

Conventional vehicle suspension systems, which are passive in nature consists of springs with constant stiffness and dampers with constant damping coefficient. These suspension systems cannot meet the characteristics such as ride comfort, road handing and suspension deflection during abnormal road conditions simultaneously. Active and semi-active suspension systems are the solutions to achieve the desired suspension characteristics. Since, active system is bulky and requires high energy for working, a semi-active suspension system is considered in the present work to analyze vehicle traversing over various road profiles for ride comfort. Mathematical model of a 7 DoF passenger car is formulated using Newton’s method. A semi-active suspension system with skyhook linear control strategy avoids the road excitations at resonant frequencies by shifting the natural frequencies of the model by varying damping coefficients based on the vehicle response for different road conditions where the excitations could be harmonic, transient and random. Modal analysis is carried out to identify the un-damped natural frequencies and mode shapes for different values of damping. The above analyses are carried out through analytical and numerical methods using MATLAB and ANSYS software respectively and the results obtained from both are in good agreement.


2017 ◽  
Vol 36 (3) ◽  
pp. 214-226 ◽  
Author(s):  
Leilei Zhao ◽  
Changcheng Zhou ◽  
Yuewei Yu ◽  
Fuxing Yang

For the complex structure of driver seat-cushion coupled system for metropolitan buses, there are still lack of convenient and reliable modelling methods for the system at present. To improve ride comfort, the coupled dynamic model is urgently needed to give insight into the dynamic properties of the coupled system. In this paper, for a standard commercially available seat fitted into metropolitan buses, the coupling between the seat and cushion, the nonlinear damping characteristics of the seat damper, and the elastic properties of the damper mounting bushings have been accounted for in a three degree-of-freedom driver seat-cushion coupled system model. Combing field measurements of the seat suspension excitation and cushion acceleration response, a specific flow of hybrid modelling of driver seat-cushion coupled system without the requirement of further bench tests was presented. The analogy between acceleration responses in the frequency domain and the time courses proves that the model can predict the dynamic characteristics of the coupled system with good accuracy for stationary random excitation. The model parameters were also validated by the corresponding bench test. The results show that the accuracy of the model parameters is sufficient and the hybrid modelling method is reliable, which provide a foundation for the optimal design of seat suspension and/or cushion to further improve ride comfort.


2008 ◽  
Vol 15 (5) ◽  
pp. 493-503 ◽  
Author(s):  
S. Hossein Sadati ◽  
Salar Malekzadeh ◽  
Masood Ghasemi

In this paper, an 8-DOF model including driver seat dynamics, subjected to random road disturbances is used in order to investigate the advantage of active over conventional passive suspension system. Force actuators are mounted parallel to the body suspensions and the driver seat suspension. An optimal control approach is taken in the active suspension used in the vehicle. The performance index for the optimal control design is a quantification of both ride comfort and road handling. To simulate the real road profile condition, stochastic inputs are applied. Due to practical limitations, not all the states of the system required for the state-feedback controller are measurable, and hence must be estimated with an observer. In this paper, to have the best estimation, an optimal Kalman observer is used. The simulation results indicate that an optimal observer-based controller causes both excellent ride comfort and road handling characteristics.


2019 ◽  
Vol 213 ◽  
pp. 02101
Author(s):  
Piotr Woś ◽  
Ryszard Dindorf

This article presents issues related to the study of the seat vibration isolating properties of the working machine. The spring force of the suspension system is realized by means of a pneumatic spring. The mathematical model of the air spring is presented. The results of research presented in the form of power spectral density of the vibration acceleration of the suspension system.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8138
Author(s):  
Ján Dižo ◽  
Miroslav Blatnický ◽  
Juraj Gerlici ◽  
Bohuš Leitner ◽  
Rafał Melnik ◽  
...  

Ride comfort for passengers remains a pressing topic. The level of comfort in a vehicle can influences passengers’ preferences for a particular means of transport. The article aims to evaluate the influence of changes in suspension parameters on the ride comfort for passengers. The theoretical background includes a description of the applied method for a creating the virtual model of an investigated vehicle as well as the method of evaluating the ride comfort. The ride comfort of the vehicle is assessed based on the standard method, which involves calculating the mean comfort method, i.e., ride comfort index NMV in chosen points on a body floor. The NMV ride comfort index (Mean Comfort Standard Method) requires the input of acceleration signals in three directions. The rest of the article offers the results of simulation computations. The stiffness–damping parameters of the primary and secondary suspension systems were changed at three levels and the vehicle was run on the real track section. The ride index NMV was calculated for all three modifications of the suspension system in the chosen fifteen points of the body floor. It was found that lower values in the stiffness of the secondary suspension system lead to lower levels of ride comfort in the investigated railway passenger car; however, lower values in the stiffness–damping parameters of the primary suspension system did not decrease the levels of ride comfort as significantly.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 409 ◽  
Author(s):  
Mat Hussin Ab Talib ◽  
Intan Zaurah Mat Darus ◽  
Pakharuddin Mohd Samin

This paper presents the effect of the fuzzy logic based-skyhook policy tuned using particle swarm optimization (FLSP-PSO) for semi-active ride comfort of quarter vehicle model. Spencer model was used to represent the magnetorheological damper model and its behavior was investigated in the form of force-displacement and force-velocity characteristics. The fuzzy logic control adopted with the skyhook policy based on Sugeno-type fuzzy was used to enhance the ride performance. An intelligent evolutionary algorithm known as the particle swarm optimization was also adapted in the proposed controller to compute the fuzzy gain scaling. The performance of the FLSP-PSO controller is compared to other controller responses. The effect of the PSO techniques to optimize the FLPS parameters gives a better performance and able to improve the vehicle ride comfort than its counterparts.  


Sign in / Sign up

Export Citation Format

Share Document