The Role of Distributed Manufacturing and 3D Printing in Development of Personal Protective Equipment Against COVID-19

Author(s):  
John Scott Frazer
2020 ◽  
Author(s):  
Ruben Perez-Mañanes ◽  
Sonia García de San José ◽  
Manuel Desco-Menéndez ◽  
Ignacio Sánchez-Arcilla ◽  
Esmeralda González-Fernández ◽  
...  

Abstract Background 3D printing and distributed manufacturing represent a paradigm shift in the health system that is becoming critical during the COVID-19 pandemic. University hospitals are also taking on the role of manufacturers of custom-made solutions thanks to 3D printing technology. Case Presentation We present a monocentric observational case study regarding the distributed manufacturing of three groups of products during the period of the COVID-19 pandemic from 14 March to 10 May 2020: personal protective equipment, ventilatory support, and diagnostic and consumable products. Networking during this period has enabled the delivery of a total of 17,276 units of products manufactured using 3D printing technology. The most manufactured product was the face shields and ear savers, while the one that achieved the greatest clinical impact was the mechanical ventilation adapters and swabs. The products were manufactured by individuals in 57.3% of the cases, and our hospital acted as the main delivery node in a hub with 10 other hospitals. The main advantage of this production model is the fast response to stock needs, being able to adapt almost in real time.Conclusions The role of 3D printing in the hospital environment allows the reconciliation of in-house and distributed manufacturing with traditional production, providing custom-made adaptation of the specifications, as well as maximum efficiency in the working and availability of resources, which is of special importance at critical times for health systems such as the current COVID-19 pandemic.


2015 ◽  
Vol 101 (2) ◽  
pp. 107-109
Author(s):  
CR Brisley ◽  
A Duggan

AbstractThe Royal Marines Band Service (RMBS) deploys in support of the Royal Naval Medical Service in a variety of operational roles. This article describes the roles that RMBS personnel performed whilst deployed on board RFA ARGUS during the recent Operation GRITROCK. The article is divided into five main sections, each describing one aspect of the work that RMBS ranks were asked to undertake: casualty handling; working within Primary Casualty Receiving Facility (PCRF) departments; personal protective equipment (PPE) monitoring and drills; temperature monitoring; and last, but not least, musical support. This will provide the reader with an insight into what the RMBS have achieved whilst deployed on board ARGUS and also what skills they are able to bring, both to contingency operations and operations in the medical environment.


Author(s):  
Ian Greaves ◽  
Paul Hunt

Chapter 5 covers the declaration of a major incident and practice of the initial situation report from the scene. A summary is given of the systematic approach and organization of the on-scene medical response including key medical roles and responsibilities at scene, triage, decontamination, personal protective equipment, dealing with the dead and human remains, evacuation, survivor reception, mass fatalities and national emergency mortuary arrangements, management of contaminated fatalities, and the role of the police senior investigation manager.


Recycling ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 27
Author(s):  
Fabiula Danielli Bastos de Sousa

Since the beginning of the first cases of the new coronavirus, opinions and laws on the use of plastic materials have been questioned around the world. Their importance in the manufacture of hospital devices and personal protective equipment (PPE) is unquestionable, as they contribute largely to the reduction of the virus spread, helping health systems from all edges of the world and, most importantly, saving lives. However, the same material that is a protector, becomes a polluter when inadequately disposed of in the environment, generating or worsening socio-environmental problems, such as pollution of water bodies by plastic. A critical overview of the role of plastic during the COVID-19 pandemic is provided in this paper. A future panorama is attempted to be outlined. The real possibility of the virus spread from the use of plastic is discussed, as well as the recycling of plastic during the pandemic, correlating its use with problems that it may cause.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3339 ◽  
Author(s):  
Mostapha Tarfaoui ◽  
Mourad Nachtane ◽  
Ibrahim Goda ◽  
Yumna Qureshi ◽  
Hamza Benyahia

Currently, the emergence of a novel human coronavirus disease, named COVID-19, has become a great global public health concern causing severe respiratory tract infections in humans. Yet, there is no specific vaccine or treatment for this COVID-19 where anti-disease measures rely on preventing or slowing the transmission of infection from one person to another. In particularly, there is a growing effort to prevent or reduce transmission to frontline healthcare professionals. However, it is becoming an increasingly international concern respecting the shortage in the supply chain of critical single-use personal protective equipment (PPE). To that scope, we aim in the present work to provide a comprehensive overview of the latest 3D printing efforts against COVID-19, including professional additive manufacturing (AM) providers, makers and designers in the 3D printing community. Through this review paper, the response to several questions and inquiries regarding the following issues are addressed: technical factors connected with AM processes; recommendations for testing and characterizing medical devices that additively manufactured; AM materials that can be used for medical devices; biological concerns of final 3D printed medical parts, comprising biocompatibility, cleaning and sterility; and limitations of AM technology.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ferran Fillat-Gomà ◽  
Sergi Coderch-Navarro ◽  
Laia Martínez-Carreres ◽  
Núria Monill-Raya ◽  
Toni Nadal-Mir ◽  
...  

Abstract Background To cope with shortages of equipment during the COVID-19 pandemic, we established a nonprofit end-to-end system to identify, validate, regulate, manufacture, and distribute 3D-printed medical equipment. Here we describe the local and global impact of this system. Methods Together with critical care experts, we identified potentially lacking medical equipment and proposed solutions based on 3D printing. Validation was based on the ISO 13485 quality standard for the manufacturing of customized medical devices. We posted the design files for each device on our website together with their technical and printing specifications and created a supply chain so that hospitals from our region could request them. We analyzed the number/type of items, petitioners, manufacturers, and catalogue views. Results Among 33 devices analyzed, 26 (78·8%) were validated. Of these, 23 (88·5%) were airway consumables and 3 (11·5%) were personal protective equipment. Orders came from 19 (76%) hospitals and 6 (24%) other healthcare institutions. Peak production was reached 10 days after the catalogue was published. A total of 22,135 items were manufactured by 59 companies in 18 sectors; 19,212 items were distributed to requesting sites during the busiest days of the pandemic. Our online catalogue was also viewed by 27,861 individuals from 113 countries. Conclusions 3D printing helped mitigate shortages of medical devices due to problems in the global supply chain.


Sign in / Sign up

Export Citation Format

Share Document