Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis

2009 ◽  
2020 ◽  
Author(s):  
Alexandra Stavropoulou ◽  
Matthew Hiscock ◽  
Balz Kamber ◽  
Juan-Diego Rodriguez-Blanco

<p>Quantitative modal analysis of rock thin sections or liberation analysis of minerals processing plant materials can be very complex as grain sizes can vary by more than 7 orders of magnitude: Thin sections of rocks may contain extremely coarse grains (mm-sized crystals) down to glassy material with no long-range order (ordered domains <1 nm).</p><p>Material characterisation and modal analysis have traditionally been carried out with a combination of solid-state, microscopic and spectroscopic techniques (e.g., optical / scanning electron microscopy, powder X-ray diffraction, X-ray fluorescence spectroscopy). These techniques require different sample preparation routines, data acquisition and evaluation - a time-consuming process that may be considered too complex to implement in mineral processing plants despite requiring the relevant sample preparation equipment. Scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS provides an opportunity to carry out this characterisation in a more rigorous and, in certain cases, automated way. This process includes image thresholding (setting of grey levels of present phases by the analyst) and X-ray data collection with EDS. EDS is an ideal analytical technique for this work as it offers high acquisition speeds and the collection of the whole energy spectrum with a single detector, not requiring the selection of a fixed element list prior to data acquisition. Characterisation of coarse-grained rocks requires larger areas to be scanned in order to ensure representativity.</p><p>The analytical workflow can be further optimised by combining SEM-based analytical techniques for in situ, non-destructive, and potentially simultaneous bulk analysis. Electron backscatter diffraction (EBSD) is an SEM-based technique which can be used to determine the crystallographic properties and orientation of mineral grains, as well as to perform fabric analyses on polycrystalline materials. EBSD allows for crystallographic data to be collected simultaneously with chemical data and does not require powdered samples. As a result, the texture of the material can be fully preserved. The sample preparation requirements of the technique are similar to those for standard SEM-EDS, with an additional final polishing step, essential for the removal of surface imperfections, as the EBSD signal is generated on the sample surface. The coupling of EDS and EBSD datasets permits the enhanced interpretation of feature analysis data, allowing for a deeper understanding of the compositional, structural and textural properties of the sample. This, highly-efficient, in-situ, bulk material characterisation, is key for the mining industry, as it provides insights for optimising downstream procedures thereby saving time and resources and bolstering throughput and efficiency.</p>


Author(s):  
P. J. Nolan

This paper reviews the application of scanning electron microscopy and x-ray spectrometry to the examination of questioned documents that have been submitted to the author's laboratory. The use of the SEM is confined to examples where it can provide information unobtainable by alternative methods. This is demonstrated using a variety of examples including paper and printing ink analysis, and the examination of valuable documents, such as stamps. The strategy followed when attempting to determine the sequence of overlapping or intersecting writings is discussed. Special sample preparation techniques are explained and guidelines for optimizing instrumental conditions for different sample types are outlined.


2021 ◽  
Vol 249 ◽  
pp. 401-407
Author(s):  
Irina Gembitskaya ◽  
Maria Gvozdetskaya

Crushing and grinding of materials are the most common processes of sample preparation for subsequent analysis and industrial application. Recently, grinding has become one of the most popular methods for producing nano-sized powders. This study investigates certain features of grain transformation in the process of grinding ores with finely dispersed valuable components in order to liberate them, as well as specifics of grinding metallurgical raw materials, metals and their mixtures for using them as initial components in metallurgical and other technological processes. We identified and examined structural and morphological changes of various powders after ultrafine grinding using the methods of scanning electron microscopy and X-ray microanalysis. It was proved that in order to take into account sample preparation artifacts during analytic studies of solid samples and development of technological processes, fine grinding of heterogeneous materials, especially if they contain metals, requires monitoring of the ground product by methods of scanning electron microscopy and X-ray microanalysis.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
M. L. Zimny ◽  
A. C. Haller

During hibernation the ground squirrel is immobile, body temperature reduced and metabolism depressed. Hibernation has been shown to affect dental tissues varying degrees, although not much work has been done in this area. In limited studies, it has been shown that hibernation results in (1) mobilization of bone minerals; (2) deficient dentinogenesis and degeneration of alveolar bone; (3) presence of calculus and tears in the cementum; and (4) aggrevation of caries and pulpal and apical tooth abscesses. The purpose of this investigation was to study the effects of hibernation on dental tissues employing scanning electron microscopy (SEM) and related x-ray analyses.


Author(s):  
Yun Lu ◽  
David C. Joy

High resolution scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDXA) were performed to investigate microparticles in blended cements and their hydration products containing sodium-rich chemical wastes. The physical appearance of powder particles and the morphological development at different hydration stages were characterized by using high resolution SEM Hitachi S-900 and by SEM S-800 with a EDX spectrometer. Microparticles were dispersed on the sample holder and glued by 1% palomino solution. Hydrated bulk samples were dehydrated by acetone and mounted on the holder by silver paste. Both fracture surfaces and flat cutting sections of hydrating samples were prepared and examined. Some specimens were coated with an 3 nm thick Au-Pd or Cr layer to provide good conducting surfaces. For high resolution SEM S-900 observations the accelerating voltage of electrons was 1-2 KeV to protect the electron charging. Microchemical analyses were carried out by S800/EDS equipped with a LINK detector of take-off angle =40°.


Sign in / Sign up

Export Citation Format

Share Document