Regulation of the subunit composition of tomato plastidic glutamine synthetase by light and the nitrogen source

Planta ◽  
1996 ◽  
Vol 200 (2) ◽  
Author(s):  
Andrea Migge ◽  
Gudrun Meya ◽  
Elisa Carrayol ◽  
Bertrand Hirel ◽  
ThomasW. Becker
1991 ◽  
Vol 11 (12) ◽  
pp. 6229-6247 ◽  
Author(s):  
S M Miller ◽  
B Magasanik

We analyzed the upstream region of the GDH2 gene, which encodes the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae, for elements important for the regulation of the gene by the nitrogen source. The levels of this enzyme are high in cells grown with glutamate as the sole source of nitrogen and low in cells grown with glutamine or ammonium. We found that this regulation occurs at the level of transcription and that a total of six sites are required to cause a CYC1-lacZ fusion to the GDH2 gene to be regulated in the same manner as the NAD-linked glutamate dehydrogenase. Two sites behaved as upstream activation sites (UASs). The remaining four sites were found to block the effects of the two UASs in such a way that the GDH2-CYC1-lacZ fusion was not expressed unless the cells containing it were grown under conditions favorable for the activity of both UASs. This complex regulatory system appears to account for the fact that GDH2 expression is exquisitely sensitive to glutamine, whereas the expression of GLN1, coding for glutamine synthetase, is not nearly as sensitive.


2001 ◽  
Vol 137 (1) ◽  
pp. 77-84 ◽  
Author(s):  
H. LORENZO ◽  
J. M. SIVERIO ◽  
M. CABALLERO

Rose production is limited by salinity and highly affected by the nitrogen source present in the nutrient solution. The influence of sodium on several aspects of nutrition has been investigated in ‘Lambada' rose plants using different sources of nitrogen in the fertilization treatment. Experiments using a previously defined mono-shoot model plant and a simplified hydroponic culture allowed us to study the effects of salinity v. nitrogen on NPK uptake during the culture period. Mineral concentrations, nitrate reductase (NR) and glutamine synthetase (GS) activities were also analysed. This study showed that rose plants were more sensitive to saline conditions under NH4+ fertilization without detectable effects on growth or in NPK mineral contents in shoots. Parameters affected most were enzymatic activities analysed such as leaf nitrate reductase activity which was reduced under NH4+ nutrition. Leaf glutamine synthetase was also enhanced by saline conditions. The Na/K ratio showed that under NH4+ nutrition, the highest sodium accumulation occurred in roots. Nitrate uptake did not show a clear pattern related to nitrogen source, however, ammonium uptake was affected by salinity when NH4+ was the sole nitrogen source in the nutrient solution. Potassium and phosphate uptake were always lower when NH4+ was present in the nutrient solution.


Microbiology ◽  
2003 ◽  
Vol 149 (8) ◽  
pp. 2163-2172 ◽  
Author(s):  
Mani Maheswaran ◽  
Karl Forchhammer

The PII signal transduction proteins GlnB and GlnK are uridylylated/deuridylylated in response to the intracellular glutamine level, the primary signal of the cellular nitrogen status. Furthermore, GlnB was shown to be allosterically regulated by 2-oxoglutarate, and thus GlnB was suggested to integrate signals of the cellular carbon and nitrogen status. Receptors of GlnB signal transduction in Escherichia coli are the NtrB/NtrC two-component system and GlnE, an enzyme which adenylylates/deadenylylates glutamine synthetase. In this study, the authors investigated the effect of different carbon sources on the expression of the NtrC-dependent genes glnA and glnK and on the uridylylation status of GlnB and GlnK. With glutamine as nitrogen source, high levels of glnA and glnK expression were obtained when glucose was used as carbon source, but expression was strongly decreased when the cells were grown with poor carbon sources or when cAMP was present. This response correlated with the uridylylation status of GlnB, suggesting that the carbon/cAMP effect was mediated through GlnB uridylylation, a conclusion that was confirmed by mutants of the PII signalling pathway. When glutamine was replaced by low concentrations of ammonium as nitrogen source, neither glnAglnK expression nor GlnB uridylylation responded to the carbon source or to cAMP. Furthermore, glutamine synthetase could be rapidly adenylylated in vivo by the external addition of glutamine; however, this occurred only when cells were grown in the presence of cAMP, not in its absence. Together, these results suggest that poor carbon sources, through cAMP signalling, favour glutamine uptake. The cellular glutamine signal is then transduced by uridylyltransferase and GlnB to modulate NtrC-dependent gene expression.


1991 ◽  
Vol 11 (2) ◽  
pp. 822-832 ◽  
Author(s):  
P W Coschigano ◽  
B Magasanik

The URE2 gene of Saccharomyces cerevisiae has been cloned and sequenced. It encodes a predicted polypeptide of 354 amino acids with a molecular weight of 40,226. Deletion of the first 63 amino acids does not have any effect on the function of the protein. Studies with disruption alleles of the URE2 and GLN3 genes showed that both genes regulate GLN1 and GDH2, the structural genes for glutamine synthetase and NAD-linked glutamate dehydrogenase, respectively, at the transcriptional level, but expression of the regulatory genes does not appear to be regulated. Active URE2 gene product was required for the inactivation of glutamine synthetase upon addition of glutamine to cells growing with glutamate as the source of nitrogen. The predicted URE2 gene product has homology to glutathione S-transferases. The gene has been mapped to chromosome XIV, 5.9 map units from petX and 3.4 map units from kex2.


1984 ◽  
Vol 30 (3) ◽  
pp. 353-359 ◽  
Author(s):  
Maria E. Alvarez ◽  
C. M. McCarthy

Mycobacterium avium was previously shown to be dependent upon ammonia or glutamine as a nitrogen source. In an effort to assess the physiology of ammonia assimilation by M. avium, a characterization of its glutamine synthetase was performed. The enzyme from M. avium was purified by streptomycin sulfate treatment, ammonium sulfate precipitation, and affinity chromatography. The enzyme was unusual in that it had a pH optimum of 6.4 and maximum enzyme activity was obtained between 50 and 60 °C as shown by the transferase assay. The glutamine synthetase activity from batch-cultured cells decreased with increasing concentration of ammonium chloride in the range of 0.25–5 μ mol/mL of medium, which demonstrated a response to environmental supply of a nitrogen source. The mycobacterial enzyme was similar to the other bacterial glutamine synthetases in terms of molecular weight and sedimentation coefficient which were 600 000 and 19.5 S, respectively, and enzyme activity was lost by treatment with a glutamate analog, methionine sulfoximine. The isoelectric point was, however, pH 4.5. Treatment of the enzyme with snake venom phosphodiesterase resulted in an increase in specific activity. AMP was released by the phosphodiesterase treatment, thus demonstrating that M. avium glutamine synthetase was regulated by adenylylation modification.


Sign in / Sign up

Export Citation Format

Share Document