The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione s-transferases

1991 ◽  
Vol 11 (2) ◽  
pp. 822-832 ◽  
Author(s):  
P W Coschigano ◽  
B Magasanik

The URE2 gene of Saccharomyces cerevisiae has been cloned and sequenced. It encodes a predicted polypeptide of 354 amino acids with a molecular weight of 40,226. Deletion of the first 63 amino acids does not have any effect on the function of the protein. Studies with disruption alleles of the URE2 and GLN3 genes showed that both genes regulate GLN1 and GDH2, the structural genes for glutamine synthetase and NAD-linked glutamate dehydrogenase, respectively, at the transcriptional level, but expression of the regulatory genes does not appear to be regulated. Active URE2 gene product was required for the inactivation of glutamine synthetase upon addition of glutamine to cells growing with glutamate as the source of nitrogen. The predicted URE2 gene product has homology to glutathione S-transferases. The gene has been mapped to chromosome XIV, 5.9 map units from petX and 3.4 map units from kex2.

1991 ◽  
Vol 11 (2) ◽  
pp. 822-832 ◽  
Author(s):  
P W Coschigano ◽  
B Magasanik

The URE2 gene of Saccharomyces cerevisiae has been cloned and sequenced. It encodes a predicted polypeptide of 354 amino acids with a molecular weight of 40,226. Deletion of the first 63 amino acids does not have any effect on the function of the protein. Studies with disruption alleles of the URE2 and GLN3 genes showed that both genes regulate GLN1 and GDH2, the structural genes for glutamine synthetase and NAD-linked glutamate dehydrogenase, respectively, at the transcriptional level, but expression of the regulatory genes does not appear to be regulated. Active URE2 gene product was required for the inactivation of glutamine synthetase upon addition of glutamine to cells growing with glutamate as the source of nitrogen. The predicted URE2 gene product has homology to glutathione S-transferases. The gene has been mapped to chromosome XIV, 5.9 map units from petX and 3.4 map units from kex2.


1992 ◽  
Vol 12 (5) ◽  
pp. 2154-2164 ◽  
Author(s):  
D J DeMarini ◽  
M Winey ◽  
D Ursic ◽  
F Webb ◽  
M R Culbertson

The SEN1 gene, which is essential for growth in the yeast Saccharomyces cerevisiae, is required for endonucleolytic cleavage of introns from all 10 families of precursor tRNAs. A mutation in SEN1 conferring temperature-sensitive lethality also causes in vivo accumulation of pre-tRNAs and a deficiency of in vitro endonuclease activity. Biochemical evidence suggests that the gene product may be one of several components of a nuclear-localized splicing complex. We have cloned the SEN1 gene and characterized the SEN1 mRNA, the SEN1 gene product, the temperature-sensitive sen1-1 mutation, and three SEN1 null alleles. The SEN1 gene corresponds to a 6,336-bp open reading frame coding for a 2,112-amino-acid protein (molecular mass, 239 kDa). Using antisera directed against the C-terminal end of SEN1, we detect a protein corresponding to the predicted molecular weight of SEN1. The SEN1 protein contains a leucine zipper motif, consensus elements for nucleoside triphosphate binding, and a potential nuclear localization signal sequence. The carboxy-terminal 1,214 amino acids of the SEN1 protein are essential for growth, whereas the amino-terminal 898 amino acids are dispensable. A sequence of approximately 500 amino acids located in the essential region of SEN1 has significant similarity to the yeast UPF1 gene product, which is involved in mRNA turnover, and the mouse Mov-10 gene product, whose function is unknown. The mutation that creates the temperature-sensitive sen1-1 allele is located within this 500-amino-acid region, and it causes a substitution for an amino acid that is conserved in all three proteins.


1991 ◽  
Vol 11 (12) ◽  
pp. 6229-6247 ◽  
Author(s):  
S M Miller ◽  
B Magasanik

We analyzed the upstream region of the GDH2 gene, which encodes the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae, for elements important for the regulation of the gene by the nitrogen source. The levels of this enzyme are high in cells grown with glutamate as the sole source of nitrogen and low in cells grown with glutamine or ammonium. We found that this regulation occurs at the level of transcription and that a total of six sites are required to cause a CYC1-lacZ fusion to the GDH2 gene to be regulated in the same manner as the NAD-linked glutamate dehydrogenase. Two sites behaved as upstream activation sites (UASs). The remaining four sites were found to block the effects of the two UASs in such a way that the GDH2-CYC1-lacZ fusion was not expressed unless the cells containing it were grown under conditions favorable for the activity of both UASs. This complex regulatory system appears to account for the fact that GDH2 expression is exquisitely sensitive to glutamine, whereas the expression of GLN1, coding for glutamine synthetase, is not nearly as sensitive.


1992 ◽  
Vol 12 (5) ◽  
pp. 2154-2164
Author(s):  
D J DeMarini ◽  
M Winey ◽  
D Ursic ◽  
F Webb ◽  
M R Culbertson

The SEN1 gene, which is essential for growth in the yeast Saccharomyces cerevisiae, is required for endonucleolytic cleavage of introns from all 10 families of precursor tRNAs. A mutation in SEN1 conferring temperature-sensitive lethality also causes in vivo accumulation of pre-tRNAs and a deficiency of in vitro endonuclease activity. Biochemical evidence suggests that the gene product may be one of several components of a nuclear-localized splicing complex. We have cloned the SEN1 gene and characterized the SEN1 mRNA, the SEN1 gene product, the temperature-sensitive sen1-1 mutation, and three SEN1 null alleles. The SEN1 gene corresponds to a 6,336-bp open reading frame coding for a 2,112-amino-acid protein (molecular mass, 239 kDa). Using antisera directed against the C-terminal end of SEN1, we detect a protein corresponding to the predicted molecular weight of SEN1. The SEN1 protein contains a leucine zipper motif, consensus elements for nucleoside triphosphate binding, and a potential nuclear localization signal sequence. The carboxy-terminal 1,214 amino acids of the SEN1 protein are essential for growth, whereas the amino-terminal 898 amino acids are dispensable. A sequence of approximately 500 amino acids located in the essential region of SEN1 has significant similarity to the yeast UPF1 gene product, which is involved in mRNA turnover, and the mouse Mov-10 gene product, whose function is unknown. The mutation that creates the temperature-sensitive sen1-1 allele is located within this 500-amino-acid region, and it causes a substitution for an amino acid that is conserved in all three proteins.


2007 ◽  
Vol 74 (1) ◽  
pp. 305-308 ◽  
Author(s):  
Yoshiaki Umemoto ◽  
Ryosuke Onishi ◽  
Toshiyoshi Araki

ABSTRACT The β-1,3-xylosidase gene (xloA) of Vibrio sp. strain XY-214 was cloned and expressed in Escherichia coli. The xloA gene consisted of a 1,608-bp nucleotide sequence encoding a protein of 535 amino acids with a predicted molecular weight of 60,835. The recombinant β-1,3-xylosidase hydrolyzed β-1,3-xylooligosaccharides to d-xylose as a final product.


1990 ◽  
Vol 10 (6) ◽  
pp. 2941-2949
Author(s):  
J H McCusker ◽  
J E Haber

Four new complementation groups of mutations which confer resistance to several amino acid analogs in Saccharomyces cerevisiae are described. These mutants were isolated on medium containing urea as the nitrogen source, in contrast to previous studies that had used medium containing proline. All four resistance to amino acid analog (raa) complementation groups appear to confer resistance by reducing amino acid analog and amino acid uptake. In some genetic backgrounds, raa leu2 and raa thr4 double mutants are inviable, even on rich medium. The raa4 mutation may affect multiple amino acid transport systems, since raa4 mutants are unable to use proline as a nitrogen source. raa4 is, however, unlinked to a previously described amino acid analog resistance and proline uptake mutant, aap1, or to the general amino acid permease mutant gap1. Both raa4 and gap1 prevent uptake of [3H]leucine in liquid cultures. The raa1, raa2, and raa3 mutants affect only a subset of the amino acid analogs and amino acids affected by raa4. The phenotypes of raa1, -2, and -3 mutants are readily observed on agar plates but are not seen in uptake and incorporation of amino acids measured in liquid media.


1986 ◽  
Vol 6 (12) ◽  
pp. 4763-4766 ◽  
Author(s):  
P A Silver ◽  
R Brent ◽  
M Ptashne

We showed by immunofluorescence that the procaryotic DNA-binding protein LexA and a chimeric protein that contains the DNA-binding portion of LexA (amino acids 1 to 87) and a large portion (amino acids 74 to 881) of the Saccharomyces cerevisiae positive regulatory GAL4 protein (GAL4 gene product) are not preferentially localized in the nucleus in S. cerevisiae.


1989 ◽  
Vol 9 (1) ◽  
pp. 144-151 ◽  
Author(s):  
G Paravicini ◽  
H U Mösch ◽  
T Schmidheini ◽  
G Braus

The ARO3 gene encodes one of two 3-deoxy-D-arabino-heptulosonate-7-phosphate isoenzymes in Saccharomyces cerevisiae catalyzing the first step in the biosynthesis of aromatic amino acids. The ARO3-encoded 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (EC 4.1.2.15) is feedback inhibited by phenylalanine; its isoenzyme, the ARO4 gene product, is inhibited by tyrosine. Both genes ARO3 and ARO4 are strongly regulated under the general control regulatory system. Cells carrying only one intact isogene are phenotypically indistinguishable from a wild-type strain when grown on minimal medium. The complete functional ARO3 promoter comprises 231 base pairs and contains only one TGACTA binding site for the general control activator protein GCN4. Mutating this element to TTACTA inhibits binding of GCN4 and results in a decreased basal level of ARO3 gene product and slow growth of a strain defective in its isogene ARO4. In addition, ARO3 gene expression cannot be elevated under amino acid starvation conditions. An ARO3 aro4 strain with gcn4 genetic background has the same phenotype of low ARO3 gene expression and slow growth. The amount of GCN4 protein present in repressed wild-type cells therefore seems to contribute to a basal level of ARO3 gene expression. The general control activator GCN4 has thus two functions: (i) to maintain a basal level of ARO3 transcription (basal control) in the presence of amino acids and (ii) to derepress the ARO3 gene to a higher transcription rate under amino acid starvation (general control).


1994 ◽  
Vol 196 (1) ◽  
pp. 157-166 ◽  
Author(s):  
K W Cunningham ◽  
G R Fink

Cytosolic free Ca2+ is maintained at submicromolar levels in budding yeast by the activity of Ca2+ pumps and antiporters. We have recently identified the structural genes for two Ca2+ pumps, PMC1 [correction of PCM1] and PMR1, which are required for Ca2+ sequestration into the vacuole and secretory organelles, respectively. The function of either Ca2+ pump is sufficient for yeast viability, but deletion of both genes is lethal because of elevation of cytosolic [Ca2+] and activation of calcineurin, a Ca(2+)- and calmodulin-dependent protein phosphatase. Calcineurin activation decreases Ca2+ sequestration in the vacuole by a putative Ca2+ antiporter and may also increase Ca2+ pump activity. These regulatory processes can affect the ability of yeast strains to tolerate high extracellular [Ca2+]. We propose a model in which the cellular response to changes in the environmental levels of Ca2+ is mediated by calmodulin and calcineurin which, in turn, modulate the various types of Ca2+ transporters.


1990 ◽  
Vol 10 (6) ◽  
pp. 2941-2949 ◽  
Author(s):  
J H McCusker ◽  
J E Haber

Four new complementation groups of mutations which confer resistance to several amino acid analogs in Saccharomyces cerevisiae are described. These mutants were isolated on medium containing urea as the nitrogen source, in contrast to previous studies that had used medium containing proline. All four resistance to amino acid analog (raa) complementation groups appear to confer resistance by reducing amino acid analog and amino acid uptake. In some genetic backgrounds, raa leu2 and raa thr4 double mutants are inviable, even on rich medium. The raa4 mutation may affect multiple amino acid transport systems, since raa4 mutants are unable to use proline as a nitrogen source. raa4 is, however, unlinked to a previously described amino acid analog resistance and proline uptake mutant, aap1, or to the general amino acid permease mutant gap1. Both raa4 and gap1 prevent uptake of [3H]leucine in liquid cultures. The raa1, raa2, and raa3 mutants affect only a subset of the amino acid analogs and amino acids affected by raa4. The phenotypes of raa1, -2, and -3 mutants are readily observed on agar plates but are not seen in uptake and incorporation of amino acids measured in liquid media.


Sign in / Sign up

Export Citation Format

Share Document