In vivo shedding of apical plasma membrane in the thyroid follicle cells of the mouse

1984 ◽  
Vol 236 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Mikael Nilsson ◽  
Torsten �fverholm ◽  
LarsE. Ericson
1983 ◽  
Vol 97 (3) ◽  
pp. 607-617 ◽  
Author(s):  
V Herzog

Inside-out follicles prepared from pig thyroid glands were used for studies on endocytosis. endocytosis. In this in vitro system, only the apical plasma membranes of follicle cells were exposed to tracers added to the culture medium. Cationized ferritin (CF) bound to the apical plasma membrane and was transferred first to endosomes and to lysosomes (within 5 min). Later, after approximately 30 min, CF was also found in stacked Golgi cisternae. In addition, a small fraction of endocytic vesicles carrying CF particles became inserted into the lateral (at approximately 11 min) and the basal (at approximately 16 min) plasma membranes. Morphometric evaluation of CF adhering to the basolateral cell surfaces showed that the vesicular transport across thyroid follicle cells (transcytosis) was temperature-sensitive; it ceased at 15 degrees C but increased about ninefold in follicles stimulated with thyrotropin (TSH). Thyroglobulin-gold conjugates and [3H]thyroglobulin (synthesized in separate follicle preparations in the presence of [3H]leucine) were absorbed to the apical plasma membrane and detected mainly in lysosomes. A small fraction was also transported to the basolateral cell surfaces where the thyroglobulin preparations detached and accumulated in the newly formed central cavity. As in the case of CF, transcytosis of thyroglobulin depended on the stimulation of follicles with TSH. The observations showed that a transepithelial vesicular transport operates in thyroid follicle cells. This transport is regulated by TSH and includes the transfer of thyroglobulin from the apical to the basolateral plasma membranes. Transcytosis of thyroglobulin could explain the occurrence of intact thyroglobulin in the circulation of man and several mammalian species.


2001 ◽  
Vol 280 (4) ◽  
pp. F675-F682 ◽  
Author(s):  
Johannes Loffing ◽  
Marija Zecevic ◽  
Eric Féraille ◽  
Brigitte Kaissling ◽  
Carol Asher ◽  
...  

Aldosterone controls sodium reabsorption and potassium secretion in the aldosterone-sensitive distal nephron (ASDN). Although clearance measurements have shown that aldosterone induces these transports within 30–60 min, no early effects have been demonstrated in vivo at the level of the apical epithelial sodium channel (ENaC), the main effector of this regulation. Here we show by real-time RT-PCR and immunofluorescence that an aldosterone injection in adrenalectomized rats induces α-ENaC subunit expression along the entire ASDN within 2 h, whereas β- and γ-ENaC are constitutively expressed. In the proximal ASDN portions only, ENaC is shifted toward the apical cellular pole and the apical plasma membrane within 2 and 4 h, respectively. To address the question of whether the early aldosterone-induced serum and glucocorticoid-regulated kinase (SGK) might mediate this apical shift of ENaC, we analyzed SGK induction in vivo. Two hours after aldosterone, SGK was highly induced in all segment-specific cells of the ASDN, and its level decreased thereafter. In Xenopus laevis oocytes, SGK induced ENaC activation and surface expression by a kinase activity-dependent mechanism. In conclusion, the rapid in vivo accumulation of SGK and α-ENaC after aldosterone injection takes place along the entire ASDN, whereas the translocation of α,β,γ-ENaC to the apical plasma membrane is restricted to its proximal portions. Results from oocyte experiments suggest the hypothesis that a localized activation of SGK may play a role in the mediation of ENaC translocation.


1999 ◽  
Vol 276 (2) ◽  
pp. F179-F190 ◽  
Author(s):  
Jørgen Frøkiaer ◽  
David Marples ◽  
Heinz Valtin ◽  
John F. Morris ◽  
Mark A. Knepper ◽  
...  

In the renal collecting duct, vasopressin acutely activates cAMP production, resulting in trafficking of aquaporin-2 water channels (AQP2) to the apical plasma membrane, thereby increasing water permeability. This acute response is modulated by long-term changes in AQP2 expression. Recently, a cAMP-responsive element has been identified in the AQP2 gene, raising the possibility that changes in cAMP levels may control AQP2 expression. To investigate this possibility, we determined AQP2 protein levels in a strain of mice, DI +/+ severe (DI), which have genetically high levels of cAMP-phosphodiesterase activity, and hence low cellular cAMP levels, and severe polyuria. Semiquantitative immunoblotting of membrane fractions prepared from whole kidneys revealed that AQP2 levels in DI mice were only 26 ± 7% (±SE) of those in control mice ( n = 10, P < 0.01). In addition, semiquantitative Northern blotting revealed a significantly lower AQP2 mRNA expression in kidneys from DI mice compared with control mice (43 ± 6% vs. 100 ± 10%; n = 6 in each group, P < 0.05). AQP3 levels were also reduced. The mice were polyuric and urine osmolalities were accordingly substantially lower in the DI mice than in controls (496 ± 53 vs. 1,696 ± 105 mosmol/kgH2O, respectively). Moreover, there was a linear correlation between urine osmolalities and AQP2 levels ( P < 0.05). Immunoelectron microscopy confirmed the markedly lower expression of AQP2 in collecting duct principal cells in kidneys of DI mice and, furthermore, demonstrated that AQP2 was almost completely absent from the apical plasma membrane. Thus expression of AQP2 and AQP2 trafficking were severely impaired in DI mice. These results are consistent with the view that in vivo regulation of AQP2 expression by vasopressin is mediated by cAMP.


2010 ◽  
Vol 298 (4) ◽  
pp. F935-F940 ◽  
Author(s):  
Janet D. Klein ◽  
Mitsi A. Blount ◽  
Otto Fröhlich ◽  
Chad E. Denson ◽  
Xiaoxiao Tan ◽  
...  

Vasopressin is the primary hormone regulating urine-concentrating ability. Vasopressin phosphorylates the UT-A1 urea transporter in rat inner medullary collecting ducts (IMCDs). To assess the effect of UT-A1 phosphorylation at S486, we developed a phospho-specific antibody to S486-UT-A1 using an 11 amino acid peptide antigen starting from amino acid 482 that bracketed S486 in roughly the center of the sequence. We also developed two stably transfected mIMCD3 cell lines: one expressing wild-type UT-A1 and one expressing a mutated form of UT-A1, S486A/S499A, that is unresponsive to protein kinase A. Forskolin stimulates urea flux in the wild-type UT-A1-mIMCD3 cells but not in the S486A/S499A-UT-A1-mIMCD3 cells. The phospho-S486-UT-A1 antibody identified UT-A1 protein in the wild-type UT-A1-mIMCD3 cells but not in the S486A/S499A-UT-A1-mIMCD3 cells. In rat IMCDs, forskolin increased the abundance of phospho-S486-UT-A1 (measured using the phospho-S486 antibody) and of total UT-A1 phosphorylation (measured by 32P incorporation). Forskolin also increased the plasma membrane accumulation of phospho-S486-UT-A1 in rat IMCD suspensions, as measured by biotinylation. In rats treated with vasopressin in vivo, the majority of the phospho-S486-UT-A1 appears in the apical plasma membrane. In summary, we developed stably transfected mIMCD3 cell lines expressing UT-A1 and an S486-UT-A1 phospho-specific antibody. We confirmed that vasopressin increases UT-A1 accumulation in the apical plasma membrane and showed that vasopressin phosphorylates UT-A1 at S486 in rat IMCDs and that the S486-phospho-UT-A1 form is primarily detected in the apical plasma membrane.


2006 ◽  
Vol 173 (6) ◽  
pp. 937-948 ◽  
Author(s):  
Nikunj Sharma ◽  
Seng Hui Low ◽  
Saurav Misra ◽  
Bhattaram Pallavi ◽  
Thomas Weimbs

In polarized epithelial cells, syntaxin 3 localizes to the apical plasma membrane and is involved in membrane fusion of apical trafficking pathways. We show that syntaxin 3 contains a necessary and sufficient apical targeting signal centered around a conserved FMDE motif. Mutation of any of three critical residues within this motif leads to loss of specific apical targeting. Modeling based on the known structure of syntaxin 1 revealed that these residues are exposed on the surface of a three-helix bundle. Syntaxin 3 targeting does not require binding to Munc18b. Instead, syntaxin 3 recruits Munc18b to the plasma membrane. Expression of mislocalized mutant syntaxin 3 in Madin-Darby canine kidney cells leads to basolateral mistargeting of apical membrane proteins, disturbance of tight junction formation, and loss of ability to form an organized polarized epithelium. These results indicate that SNARE proteins contribute to the overall specificity of membrane trafficking in vivo, and that the polarity of syntaxin 3 is essential for epithelial cell polarization.


2019 ◽  
Author(s):  
Guilherme Ventura ◽  
Sofia Moreira ◽  
André Barros-Carvalho ◽  
Mariana Osswald ◽  
Eurico Morais-de-Sá

AbstractApical-basal polarity underpins the formation of specialized epithelial barriers that are critical for metazoan physiology. Although apical-basal polarity is long known to require the basolateral determinants Lethal Giant Larvae (Lgl), Discs Large (Dlg) and Scribble (Scrib), mechanistic understanding of their function is limited. Lgl plays a role as an aPKC inhibitor, but it remains unclear whether Lgl also forms a complex with Dlg or Scrib. Using fluorescence recovery after photobleaching, we show that Lgl does not form immobile complexes at the lateral domain of Drosophila follicle cells. Optogenetic depletion of plasma membrane phosphatidylinositol 4,5-biphosphate (PIP2) or Dlg removal accelerate Lgl cortical dynamics. However, whereas Lgl turnover relies on PIP2 binding, Dlg and Scrib are only required for Lgl localization and dynamic behavior in the presence of aPKC function. Furthermore, light-induced oligomerization of basolateral proteins indicate that Lgl is not part of the Scrib-Dlg complex in vivo. Thus, Scrib-Dlg are necessary to repress aPKC activity in the lateral domain but do not provide cortical binding sites for Lgl. Our work therefore highlights that Lgl does not act in a complex but in parallel with Scrib-Dlg to antagonize apical determinants.


2007 ◽  
Vol 19 (1) ◽  
pp. 272
Author(s):  
N. Satake ◽  
A. K. Alhaider ◽  
W. V. Holt ◽  
P. F. Watson

In vitro production (IVP) of porcine embryos is currently suboptimal compared with IVP in species such as mice and cattle. In vitro fertilization (IVF) usually involves the co-culture of oocytes and spermatozoa in a medium droplet. Oocyte quality is the focus of many studies. In vivo, the quality of spermatozoa is as important as the oocyte, and females have many mechanisms to select the highest quality spermatozoa for their oocytes. Oviductal proteins have been shown to affect sperm motility of subpopulations within an ejaculate. The present study was carried out to investigate normal and polyspermic fertilization rates of spermatozoa exposed to oviductal epithelial apical plasma membrane (APM) proteins, a mixture of peripheral proteins extracted by 1 M NaCl from isolated oviductal apical plasma membranes, prior to co-culture with oocytes in IVF. Porcine oocytes were aspirated from ovaries and grade I quality oocytes (cumulus–oocyte complexes with a spherical shape, visible nucleus, even-density cytoplasm, and multiple layers of cumulus cells) were selected and matured for 48 h in TCM-199 supplemented with LH (0.5 �g mL-1), FSH (0.5 �g mL-1), and EGF (10 ng mL-1). Ejaculates were washed through a Percoll gradient to obtain a concentrated pellet. Spermatozoa were diluted in capacitation–fertilization medium in the presence or absence of APM proteins (100 �g mL-1), incubated for 10 min, and then co-cultured with oocytes for 6 h in modified Tween medium B with milk powder medium (Abeydeera and Day 1997 Theriogenology 48, 537–544) supplemented with BSA (0.4%) and sodium bicarbonate (5 mM). Presumptive zygotes were cultured in NCSU23 medium for a further 48 h. The oocytes/zygotes were then fixed and stained with propidium iodide for evaluation by confocal microscopy for fertilization and cleavage (n = 1235 oocytes). Fertilization rates were compared between treatments in a chi-squared test using the Mantel-Haenszel approach. The overall fertilization rate was significantly higher (78 vs. 86%) when spermatozoa were incubated in the presence of APM proteins (P &lt; 0.05), and in the group of fertilized oocytes, polyspermic fertilization (47 vs. 21%) was significantly reduced when spermatozoa were exposed to APM proteins (P &lt; 0.01). However, cleavage rates were not different. These results suggest that exposure of spermatozoa to APM proteins prior to IVF increases the fertilization rate and decreases the incidence of polyspermic penetration.


2009 ◽  
Vol 297 (2) ◽  
pp. C459-C470 ◽  
Author(s):  
Jehng-Kang Wang ◽  
Ming-Shyue Lee ◽  
I-Chu Tseng ◽  
Feng-Pai Chou ◽  
Ya-Wen Chen ◽  
...  

Matriptase, a transmembrane serine protease, is broadly expressed by, and crucial for the integrity of, the epithelium. Matriptase is synthesized as a zymogen and undergoes autoactivation to become an active protease that is immediately inhibited by, and forms complexes with, hepatocyte growth factor activator inhibitor (HAI-1). To investigate where matriptase is activated and how it is secreted in vivo, we determined the expression and activation status of matriptase in seminal fluid and urine and the distribution and subcellular localization of the protease in the prostate and kidney. The in vivo studies revealed that while the latent matriptase is localized at the basolateral surface of the ductal epithelial cells of both organs, only matriptase-HAI-1 complexes and not latent matriptase are detected in the body fluids, suggesting that activation, inhibition, and transcytosis of matriptase would have to occur for the secretion of matriptase. These complicated processes involved in the in vivo secretion were also observed in polarized Caco-2 intestinal epithelial cells. The cells target latent matriptase to the basolateral plasma membrane where activation, inhibition, and secretion of matriptase appear to take place. However, a proportion of matriptase-HAI-1 complexes, but not the latent matriptase, appears to undergo transcytosis to the apical plasma membrane for secretion. When epithelial cells lose their polarity, they secrete both latent and activated matriptase. Although most epithelial cells retain very low levels of matriptase-HAI-1 complex by rapidly secreting the complex, gastric chief cells may activate matriptase and store matriptase-HAI-1 complexes in the pepsinogen-secretory granules, suggesting an intracellular activation and regulated secretion in these cells. Taken together, while zymogen activation and closely coupled HAI-1-mediated inhibition are common features for matriptase regulation, the cellular location of matriptase activation and inhibition, and the secretory route for matriptase-HAI-1 complex may vary along with the functional divergence of different epithelial cells.


1983 ◽  
Vol 64 (1) ◽  
pp. 123-136
Author(s):  
C.R. Murphy ◽  
J.G. Swift

The structural relationships between intramembranous particles (IMPs) and surface carbohydrates have been studied in cells of a compact tissue—uterine epithelial cells—using an in vivo technique. This involves introducing small amounts of glycerol into the uterine lumen of anaesthetized rats. The treatment results in extensive aggregation of IMPs in the apical plasma membrane of the epithelial cells, but no change in the distribution of several surface carbohydrates could be detected. Our findings indicate that, in this case, the carbohydrates are not the surface expression of the IMPs, which are generally believed to represent integral membrane proteins. We suggest that the structural relationships between IMPs and surface carbohydrates in the plasma membrane of this compact tissue cell are more similar to those in membranes of free-floating nucleated cells than to those in the much-studied erythrocyte membrane.


Sign in / Sign up

Export Citation Format

Share Document