Histone acetylation and histone synthesis in mouse fibroblasts during quiescence and restimulation into S-phase

1991 ◽  
Vol 101 (1) ◽  
Author(s):  
O. Knosp ◽  
H. Talasz ◽  
B. Puschendorf
FEBS Letters ◽  
1986 ◽  
Vol 195 (1-2) ◽  
pp. 309-312 ◽  
Author(s):  
Rodrigo Bravo ◽  
Heather Macdonald-Bravo

2002 ◽  
Vol 22 (23) ◽  
pp. 8215-8225 ◽  
Author(s):  
John S. Choy ◽  
Stephen J. Kron

ABSTRACT While regulated transcription requires acetylation of histone N-terminal tails to promote an open chromatin conformation, a similar role for histone acetylation in DNA replication and/or repair remains to be established. Cells lacking the NuA4 subunit Yng2 are viable but critically deficient for genome-wide nucleosomal histone H4 acetylation. We found that yng2 mutants are specifically sensitized to DNA damage in S phase induced by cdc8 or cdc9 mutations, hydroxyurea, camptothecin, or methylmethane sulfonate (MMS). In yng2, MMS treatment causes a persistent Mec1-dependent intra-S-phase checkpoint delay characterized by slow DNA repair. Restoring H4 acetylation with the histone deacetylase inhibitor trichostatin A promotes checkpoint recovery. In turn, mutants lacking the histone H3-specific acetyltransferase GCN5 are similarly sensitive to intra-S-phase DNA damage. The inviability of gcn5 yng2 double mutants suggests overlapping roles for H3 and H4 acetylation in DNA replication and repair. Paradoxically, haploid yng2 mutants do not tolerate mutations in genes important for nonhomologous end joining repair yet remain proficient for homologous recombination. Our results implicate nucleosomal histone acetylation in maintaining genomic integrity during chromosomal replication.


2020 ◽  
Vol 42 (4) ◽  
Author(s):  
Hoang Nghia Son ◽  
Hoang Nguyen Quang Huy ◽  
Tran Thi Bich Tram ◽  
Ly Ngoc Cang ◽  
Ho Nguyen Quynh Chi ◽  
...  

The present study investigated how mouse fibroblasts changed under microgravity (SMG) conditions (< 10-3 G) simulated by 3D clinostat. Results showed that SMG condition markedly reduced the proliferation of mouse fibroblasts, significantly reducing the nuclear area and intensity. Compared to the control group, the mouse fibroblasts ratio of the SMG group was higher in the G0/G1 phase but lower in the S phase and G2/M phase. The ratios of early and late apoptotic cells were also higher in the SMG group. The mouse fibroblasts under SMG conditions exhibited a reduction of β-Actin and α-Tubulin 3 expressions compared to the control group. These results suggested that the SMG condition diminished the proliferation and downregulated cytoskeletal protein expression of mouse fibroblasts. 


1970 ◽  
Vol 45 (3) ◽  
pp. 509-513 ◽  
Author(s):  
Thoru Pederson ◽  
Elliott Robbins

The cell-free synthesis of histone-like polypeptides has been achieved using a selected class of small polyribosomes as the only particulate fraction. This synthesis is prevented if the deoxyribonucleic acid (DNA) inhibitor, cytosine arabinoside, is added to the cells prior to disruption, and it is not detected when the cytoplasm used is derived from postmitotic (G1) cells. When the 100,000 g supernate from pure metaphase populations was compared with that from S phase cells, the cell-free synthesis of histone-like polypeptides in the presence of S phase polyribosomes remained unchanged. These data suggest that, except for the histone messenger RNA-ribosome complex, the cytoplasmic factors requisite for histone synthesis are present throughout the cycle, and that the shut-off of this synthesis is not under translational control.


1966 ◽  
Vol 31 (1) ◽  
pp. 1-9 ◽  
Author(s):  
David M. Prescott

The syntheses of histone, total protein, and DNA during the cell cycle were measured in the macronucleus of Euplotes eurystomus by assaying the incorporation of tritiated amino acids and tritiated thymidine in groups of 800 to 1000 synchronized cells. The synthesis of DNA begins at 30% completion of the cell cycle, proceeds at a constant rate, and ends very shortly before the beginning of macronuclear division. Histone labeling is absent during G1, begins in phase with DNA synthesis, continues at an unchanging rate during the S phase, and ends with the completion of DNA synthesis. The results support the view that the syntheses of histone and DNA are closely coupled events. Label in total protein accumulates at a constant rate during G1 and appears to shift to a slightly higher rate when histone synthesis begins. At division, radioactive DNA, histone, and total protein are distributed equally between the daughter macronuclei without loss of radioactivity. Radioautographic analysis showed that protein labeling occurs throughout the macronucleus during the entire life cycle. There was no clear difference in the degree of protein labeling between replicated and unreplicated regions of the macronucleus. The distribution of label suggests that most of macronuclear protein labeling during the cell cycle is concerned with the events of transcription rather than replication.


2005 ◽  
Vol 125 (1-2) ◽  
pp. 91-102 ◽  
Author(s):  
Stefanie Weidtkamp-Peters ◽  
Hans-Peter Rahn ◽  
M. Cristina Cardoso ◽  
Peter Hemmerich

Cell ◽  
1981 ◽  
Vol 27 (2) ◽  
pp. 321-330 ◽  
Author(s):  
Roy S. Wu ◽  
William M. Bonner

1982 ◽  
Vol 57 (1) ◽  
pp. 139-150
Author(s):  
P.N. Schofield ◽  
I.O. Walker

Synchronous cultures of Physarum polycephalum were pulsed with [3H]lysine hydrochloride in S and G2 phases of the cell cycle. Plasmodial extracts were separated into nuclear, ribosomal and acid-soluble post-ribosomal cytoplasmic fractions. Core histones could be detected by staining in the nuclear fractions of both S and G2 phases, but were not detected by staining in the cytoplasmic fractions. Newly synthesized histone was present in S-phase nuclei but not in S-phase cytoplasm. The specific activity of newly synthesized histone in G2-phase nuclei decreased by at least 95% compared to S phase and no newly synthesized histone was observed in G2-phase cytoplasmic fractions. Thus histone synthesis is restricted to S phase. There are no free pools of histone in the cytoplasm of Physarum in either S or G2 phases of the cell cycle.


Sign in / Sign up

Export Citation Format

Share Document