scholarly journals NuA4 Subunit Yng2 Function in Intra-S-Phase DNA Damage Response

2002 ◽  
Vol 22 (23) ◽  
pp. 8215-8225 ◽  
Author(s):  
John S. Choy ◽  
Stephen J. Kron

ABSTRACT While regulated transcription requires acetylation of histone N-terminal tails to promote an open chromatin conformation, a similar role for histone acetylation in DNA replication and/or repair remains to be established. Cells lacking the NuA4 subunit Yng2 are viable but critically deficient for genome-wide nucleosomal histone H4 acetylation. We found that yng2 mutants are specifically sensitized to DNA damage in S phase induced by cdc8 or cdc9 mutations, hydroxyurea, camptothecin, or methylmethane sulfonate (MMS). In yng2, MMS treatment causes a persistent Mec1-dependent intra-S-phase checkpoint delay characterized by slow DNA repair. Restoring H4 acetylation with the histone deacetylase inhibitor trichostatin A promotes checkpoint recovery. In turn, mutants lacking the histone H3-specific acetyltransferase GCN5 are similarly sensitive to intra-S-phase DNA damage. The inviability of gcn5 yng2 double mutants suggests overlapping roles for H3 and H4 acetylation in DNA replication and repair. Paradoxically, haploid yng2 mutants do not tolerate mutations in genes important for nonhomologous end joining repair yet remain proficient for homologous recombination. Our results implicate nucleosomal histone acetylation in maintaining genomic integrity during chromosomal replication.

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 911
Author(s):  
Cristina Sanchez-Fernandez ◽  
Carlos I. Lorda-Diez ◽  
Cristina Duarte-Olivenza ◽  
Juan M. Hurle ◽  
Juan A. Montero

During limb formation in vertebrates with free digits, the interdigital mesoderm is eliminated by a massive degeneration process that involves apoptosis and cell senescence. The degradation process is preceded by intense DNA damage in zones located close to methylated DNA, accompanied by the activation of the DNA repair response. In this study, we show that trimethylated histone 3 (H3K4me3, H3K9me3, and H3K27me3) overlaps with zones positive for 5mC in the nuclei of interdigital cells. This pattern contrasts with the widespread distribution of acetylated histones (H3K9ac and H4ac) and the histone variant H3.3 throughout the nucleoplasm. Consistent with the intense labeling of acetylated histones, the histone deacetylase genes Hdac1, Hdac2, Hdac3, and Hdac8, and at a more reduced level, Hdac10, are expressed in the interdigits. Furthermore, local treatments with the histone deacetylase inhibitor trichostatin A, which promotes an open chromatin state, induces massive cell death and transcriptional changes reminiscent of, but preceding, the physiological process of interdigit remodeling. Together, these findings suggest that the epigenetic profile of the interdigital mesoderm contributes to the sensitivity to DNA damage that precedes apoptosis during tissue regression.


2021 ◽  
Vol 22 (10) ◽  
pp. 5195
Author(s):  
Hui Zhang

In eukaryotic cells, DNA replication licensing is precisely regulated to ensure that the initiation of genomic DNA replication in S phase occurs once and only once for each mitotic cell division. A key regulatory mechanism by which DNA re-replication is suppressed is the S phase-dependent proteolysis of Cdt1, an essential replication protein for licensing DNA replication origins by loading the Mcm2-7 replication helicase for DNA duplication in S phase. Cdt1 degradation is mediated by CRL4Cdt2 ubiquitin E3 ligase, which further requires Cdt1 binding to proliferating cell nuclear antigen (PCNA) through a PIP box domain in Cdt1 during DNA synthesis. Recent studies found that Cdt2, the specific subunit of CRL4Cdt2 ubiquitin E3 ligase that targets Cdt1 for degradation, also contains an evolutionarily conserved PIP box-like domain that mediates the interaction with PCNA. These findings suggest that the initiation and elongation of DNA replication or DNA damage-induced repair synthesis provide a novel mechanism by which Cdt1 and CRL4Cdt2 are both recruited onto the trimeric PCNA clamp encircling the replicating DNA strands to promote the interaction between Cdt1 and CRL4Cdt2. The proximity of PCNA-bound Cdt1 to CRL4Cdt2 facilitates the destruction of Cdt1 in response to DNA damage or after DNA replication initiation to prevent DNA re-replication in the cell cycle. CRL4Cdt2 ubiquitin E3 ligase may also regulate the degradation of other PIP box-containing proteins, such as CDK inhibitor p21 and histone methylase Set8, to regulate DNA replication licensing, cell cycle progression, DNA repair, and genome stability by directly interacting with PCNA during DNA replication and repair synthesis.


2013 ◽  
Vol 33 (16) ◽  
pp. 3286-3298 ◽  
Author(s):  
Zhongqi Ge ◽  
Devi Nair ◽  
Xiaoyan Guan ◽  
Neha Rastogi ◽  
Michael A. Freitas ◽  
...  

The best-characterized acetylation of newly synthesized histone H4 is the diacetylation of the NH2-terminal tail on lysines 5 and 12. Despite its evolutionary conservation, this pattern of modification has not been shown to be essential for either viability or chromatin assembly in any model organism. We demonstrate that mutations in histone H4 lysines 5 and 12 in yeast confer hypersensitivity to replication stress and DNA-damaging agents when combined with mutations in histone H4 lysine 91, which has also been found to be a site of acetylation on soluble histone H4. In addition, these mutations confer a dramatic decrease in cell viability when combined with mutations in histone H3 lysine 56. We also show that mutation of the sites of acetylation on newly synthesized histone H4 results in defects in the reassembly of chromatin structure that accompanies the repair of HO-mediated double-strand breaks. This defect is not due to a decrease in the level of histone H3 lysine 56 acetylation. Intriguingly, mutations that alter the sites of newly synthesized histone H4 acetylation display a marked decrease in levels of phosphorylated H2A (γ-H2AX) in chromatin surrounding the double-strand break. These results indicate that the sites of acetylation on newly synthesized histones H3 and H4 can function in nonoverlapping ways that are required for chromatin assembly, viability, and DNA damage response signaling.


2020 ◽  
Author(s):  
Christophe de La Roche Saint-André ◽  
Vincent Géli

AbstractDNA replication is a highly regulated process that occurs in the context of chromatin structure and is sensitive to several histone post-translational modifications. In Saccharomyces cerevisiae, the histone methylase Set1 is responsible for the transcription-dependent deposition of H3K4 methylation (H3K4me) throughout the genome. Here we show that a combination of a hypomorphic replication mutation (orc5-1) with the absence of Set1 (set1Δ) compromises the progression through S phase, and this is associated with a large increase in DNA damage. The ensuing DNA damage checkpoint activation, in addition to that of the spindle assembly checkpoint, restricts the growth of orc5-1 set1Δ. Interestingly, orc5-1 set1Δ is sensitive to the lack of RNase H activity while a reduction of histone levels is able to counterbalance the loss of Set1. We propose that the recently described Set1-dependent mitigation of transcription-replication conflicts becomes critical for growth when the replication forks accelerate due to decreased origin firing in the orc5-1 background. Furthermore, we show that an increase of reactive oxygen species (ROS) levels, likely a consequence of the elevated DNA damage, is partly responsible for the lethality in orc5-1 set1Δ.Author summaryDNA replication, that ensures the duplication of the genetic material, starts at discrete sites, termed origins, before proceeding at replication forks whose progression is carefully controlled in order to avoid conflicts with the transcription of genes. In eukaryotes, DNA replication occurs in the context of chromatin, a structure in which DNA is wrapped around proteins, called histones, that are subjected to various chemical modifications. Among them, the methylation of the lysine 4 of histone H3 (H3K4) is carried out by Set1 in Saccharomyces cerevisiae, specifically at transcribed genes. We report that, when the replication fork accelerates in response to a reduction of active origins, the absence of Set1 leads to accumulation of DNA damage. Because H3K4 methylation was recently shown to slow down replication at transcribed genes, we propose that the Set1-dependent becomes crucial to limit the occurrence of conflicts between replication and transcription caused by replication fork acceleration. In agreement with this model, stabilization of transcription-dependent structures or reduction histone levels, to limit replication fork velocity, respectively exacerbates or moderates the effect of Set1 loss. Last, but not least, we show that the oxidative stress associated to DNA damage is partly responsible for cell lethality.


2003 ◽  
Vol 23 (2) ◽  
pp. 629-635 ◽  
Author(s):  
John R. Rohde ◽  
Maria E. Cardenas

ABSTRACT The Tor pathway mediates cell growth in response to nutrient availability, in part by inducing ribosomal protein (RP) gene expression via an unknown mechanism. Expression of RP genes coincides with recruitment of the Esa1 histone acetylase to RP gene promoters. We show that inhibition of Tor with rapamycin releases Esa1 from RP gene promoters and leads to histone H4 deacetylation without affecting promoter occupancy by Rap1 and Abf1. Genetic and biochemical evidence identifies Rpd3 as the major histone deacetylase responsible for reversing histone H4 acetylation at RP gene promoters in response to Tor inhibition by rapamycin or nutrient limitation. Our results illustrate that the Tor pathway links nutrient sensing with histone acetylation to control RP gene expression and cell growth.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Yao Liang ◽  
Yuanyuan Su ◽  
Chenzhong Xu ◽  
Na Zhang ◽  
Doudou Liu ◽  
...  

Abstract The histone acetyltransferase (HAT) KAT7/HBO1/MYST2 plays a crucial role in the pre-replication complex (pre-RC) formation, DNA replication and cell proliferation via acetylation of histone H4 and H3. In a search for protein kinase D1 (PKD1)-interacting proteins, we have identified KAT7 as a potential PKD1 substrate. We show that PKD1 directly interacts and phosphorylates KAT7 at Thr97 and Thr331 in vitro and in vivo. PKD1-mediated phosphorylation of KAT7 enhances its expression levels and stability by reducing its ubiquitination-mediated degradation. Significantly, the phospho-defective mutant KAT7-Thr97/331A attenuates histone H4 acetylation levels, MCM2/6 loading on the chromatin, DNA replication and cell proliferation. Similarly, PKD1 knockdown decreases, whereas the constitutive active mutant PKD1-CA increases histone H4 acetylation levels and MCM2/6 loading on the chromatin. Overall, these results suggest that PKD1-mediated phosphorylation of KAT7 may be required for pre-RC formation and DNA replication.


2007 ◽  
Vol 27 (23) ◽  
pp. 8364-8373 ◽  
Author(s):  
J. Veis ◽  
H. Klug ◽  
M. Koranda ◽  
G. Ammerer

ABSTRACT In budding yeast (Saccharomyces cerevisiae), the periodic expression of the G2/M-specific gene CLB2 depends on a DNA binding complex that mediates its repression during G1 and activation from the S phase to the exit of mitosis. The switch from low to high expression levels depends on the transcriptional activator Ndd1. We show that the inactivation of the Sin3 histone deacetylase complex bypasses the essential role of Ndd1 in cell cycle progression. Sin3 and its catalytic subunit Rpd3 associate with the CLB2 promoter during the G1 phase of the cell cycle. Both proteins dissociate from the promoter at the onset of the S phase and reassociate during G2 phase. Sin3 removal coincides with a transient increase in histone H4 acetylation followed by the expulsion of at least one nucleosome from the promoter region. Whereas the first step depends on Cdc28/Cln1 activity, Ndd1 function is required for the second step. Since the removal of Sin3 is independent of Ndd1 recruitment and Cdc28/Clb activity it represents a unique regulatory step which is distinct from transcriptional activation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 723-723
Author(s):  
Alexandra Sobeck ◽  
Stacie Stone ◽  
Bendert deGraaf ◽  
Vincenzo Costanzo ◽  
Johan deWinter ◽  
...  

Abstract Fanconi anemia (FA) is a genetic disorder characterized by hypersensitivity to DNA crosslinking agents and diverse clinical symptoms, including developmental anomalies, progressive bone marrow failure, and predisposition to leukemias and other cancers. FA is genetically heterogeneous, resulting from mutations in any of at least eleven different genes. The FA proteins function together in a pathway composed of a mulitprotein core complex that is required to trigger the DNA-damage dependent activation of the downstream FA protein, FANCD2. This activation is thought to be the key step in a DNA damage response that functionally links FA proteins to major breast cancer susceptibility proteins BRCA1 and BRCA2 (BRCA2 is FA gene FANCD1). The essential function of the FA proteins is unknown, but current models suggest that FA proteins function at the interface between cell cycle checkpoints, DNA repair and DNA replication, and are likely to play roles in the DNA damage response during S phase. To provide a platform for dissecting the key functional events during S-phase, we developed cell-free assays for FA proteins based on replicating extracts from Xenopus eggs. We identified the Xenopus homologs of human FANCD2 (xFANCD2) and several of the FA core complex proteins (xCCPs), and biochemically characterized these proteins in replicating cell-free extracts. We found that xCCPs and a modified isoform of xFANCD2 become associated with chromatin during normal and disrupted DNA replication. Blocking initiation of replication with geminin demonstrated that association of xCCPs and xFANCD2 with chromatin occurs in a strictly replication-dependent manner that is enhanced following DNA damage by crosslinking agents or by addition of aphidicolin, an inhibitor of replicative DNA polymerases. In addition, chromatin binding of xFANCD2, but not xBRCA2, is abrogated when xFANCA is quantitatively depleted from replicating extracts suggesting that xFANCA promotes the loading of xFANCD2 on chromatin. The chromatin-association of xFANCD2 and xCCPs is diminished in the presence of caffeine, an inhibitor of checkpoint kinases. Taken together, our data suggest a model in which the ordered loading of FA proteins on chromatin is required for processing a subset of DNA replication-blocking lesions that are resolved during late stages of replication.


Sign in / Sign up

Export Citation Format

Share Document