Immunocytochemical detection of prolactin or prolactin-like immunoreactivity in epididymis of mature male mouse

1990 ◽  
Vol 93 (3) ◽  
Author(s):  
W.B. Brumlow ◽  
C.S. Adams
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Dexter L. Lee ◽  
Justin L. Wilson

Pheromones in the urine regulate aggression of male mice and castrated males produce less of these pheromones. We tested the hypothesis that pheromones in the urine of sexually mature-intact (SMI) males placed in the cage bedding of an individually housed male mouse or in a mouse restrainer would contribute to a significant increase in mean arterial pressure (MAP), heart rate (HR), and activity. Sexually mature male C57BL/6 mice were implanted with a biotelemetry transmitter to measure MAP, HR, and activity. Urine (200 μL) from SMI mice placed in the cages of singularly housed male mice caused significant changes above baseline values for MAP (21±4 mmHg), HR (145±25 bpm), and activity (9±2 counts) when compared to urine from castrated mice-induced MAP (11±3 mmHg), HR (70±15 bpm), and activity (5±1 counts). Pretreatment with terazosin significantly reduced the change in MAP (9±3 mmHg), heart rate (90±15 bpm), and activity (4±2 counts) responses to urine from SMI males. Saline did not significantly increase MAP, HR, or activity in any group. During restraint, urine from SMI mice caused a significant change in MAP (5±0.4 mmHg) and HR (17±1 bpm); urine from castrated mice did not cause a significant increase in MAP and HR. Our results demonstrate that a significant increase in MAP, HR, and activity occurs when male mice are exposed to urine pheromones from SMI males. In summary, pheromones in the urine of SMI male excreted in the cage bedding and mouse restrainers contribute to a significant increase in cardiovascular responses in the absence of direct physical contact with a different male mouse or animal handler.


Author(s):  
S.M. Geyer ◽  
C.L. Mendenhall ◽  
J.T. Hung ◽  
E.L. Cardell ◽  
R.L. Drake ◽  
...  

Thirty-three mature male Holtzman rats were randomly placed in 3 treatment groups: Controls (C); Ethanolics (E); and Wine drinkers (W). The animals were fed synthetic diets (Lieber type) with ethanol or wine substituted isocalorically for carbohydrates in the diet of E and W groups, respectively. W received a volume of wine which provided the same gram quantity of alcohol consumed by E. The animals were sacrificed by decapitation after 6 weeks and the livers processed for quantitative triglycerides (T3), proteins, malic enzyme activity (MEA), light microscopy (LM) and electron microscopy (EM). Morphometric analysis of randomly selected LM and EM micrographs was performed to determine organellar changes in centrilobular (CV) and periportal (PV) regions of the liver. This analysis (Table 1) showed that hepatocytes from E were larger than those in C and W groups. Smooth endoplasmic reticulum decreased in E and increased in W compared to C values.


Author(s):  
Kuixiong Gao ◽  
Randal E. Morris ◽  
Bruce F. Giffin ◽  
Robert R. Cardell

Several enzymes are involved in the regulation of anabolic and catabolic pathways of carbohydrate metabolism in liver parenchymal cells. The lobular distribution of glycogen synthase (GS), phosphoenolpyruvate carboxykinase (PEPCK) and glycogen phosphorylase (GP) was studied by immunocytochemistry using cryosections of normal fed and fasted rat liver. Since sections of tissue embedded in polyethylene glycol (PEG) show good morphological preservation and increased detectability for immunocytochemical localization of antigenic sites, and semithin sections of Visio-Bond (VB) embedded tissue provide higher resolution of cellular structure, we applied these techniques and immunogold-silver stain (IGSS) for a more accurate localization of hepatic carbohydrate metabolic enzymes.


Acta Naturae ◽  
2015 ◽  
Vol 7 (2) ◽  
pp. 42-47 ◽  
Author(s):  
V. V. Gusel’nikova ◽  
D. E. Korzhevskiy

The NeuN protein is localized in nuclei and perinuclear cytoplasm of most of the neurons in the central nervous system of mammals. Monoclonal antibodies to the NeuN protein have been actively used in the immunohistochemical research of neuronal differentiation to assess the functional state of neurons in norm and pathology for more than 20 years. Recently, NeuN antibodies have begun to be applied in the differential morphological diagnosis of cancer. However, the structure of the protein, which can be revealed by antibodies to NeuN, remained unknown until recently, and the functions of the protein are still not fully clear. In the present mini-review, data on NeuN accumulated so far are summarized and analyzed. Data on the structure and properties of the protein, its isoforms, intracellular localization, and hypothesized functions are reported. The application field of immunocytochemical detection of NeuN in scientific and clinical studies, as well as the difficulties in the interpretation of the obtained experimental data and their possible causes, is described in details.


2013 ◽  
Author(s):  
Martin Blomberg Jensen ◽  
Liesbet Lieben ◽  
John E Nielsen ◽  
Ariane Willems ◽  
Anders Juul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document