Abstract. The increasing amounts of reactive nitrogen in the stratosphere necessitates accurate global measurements of stratospheric nitrogen dioxide (NO2). Over the past decade, the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument on ENVISAT (European Environmental Satellite) has been providing global coverage of stratospheric NO2 every 6 days, which is otherwise difficult to achieve with other systems (e.g. balloon measurements, solar occultation). In this study, the vertical distributions of NO2 retrieved from limb measurements of the scattered solar light from the SCIAMACHY instrument are validated using NO2 products from three different satellite instruments (SAGE II, HALOE and ACE-FTS). The retrieval approach, as well as the sensitivity of the SCIAMACHY NO2 limb data product are discussed, and the photochemical corrections needed to make this validation feasible, as well as the chosen collocation criteria are described. For each instrument, a time period of two years is analyzed with several hundreds of collocation pairs for each year and instrument. The agreement between SCIAMACHY and each instrument is found to be better than 10 % between 22–24 km and 40 km. Additionally, NO2 amounts in three different latitude regions are validated individually, with considerably better agreements in high and middle latitudes compared to tropics. Differences with SAGE II and ACE-FTS below 20 km are consistent with those expected from the diurnal effect.