Plaster of Paris as a model material for brittle porous solids

1993 ◽  
Vol 28 (12) ◽  
pp. 3221-3227 ◽  
Author(s):  
G. Vekinis ◽  
M. F. Ashby ◽  
P. W. R. Beaumont
Author(s):  
K. Cowden ◽  
B. Giammara ◽  
T. Devine ◽  
J. Hanker

Plaster of Paris (calcium sulfate hemihydrate, CaSO4. ½ H2O) has been used as a biomedical implant material since 1892. One of the primary limiting factors of these implants is their mechanical properties. These materials have low compressive and tensile strengths when compared to normal bone. These are important limiting factors where large biomechanical forces exist. Previous work has suggested that sterilization techniques could affect the implant’s strength. A study of plaster of Paris implant mechanical and physical properties to find optimum sterilization techniques therefore, could lead to a significant increase in their application and promise for future use as hard tissue prosthetic materials.USG Medical Grade Calcium Sulfate Hemihydrate Types A, A-1 and B, were sterilized by dry heat and by gamma radiation. Types A and B were additionally sterilized with and without the setting agent potassium sulfate (K2SO4). The plaster mixtures were then moistened with a minimum amount of water and formed into disks (.339 in. diameter x .053 in. deep) in polyethylene molds with a microspatula. After drying, the disks were fractured with a Stokes Hardness Tester. The compressive strengths of the disks were obtained directly from the hardness tester. Values for the maximum tensile strengths σo were then calculated: where (P = applied compression, D = disk diameter, and t = disk thickness). Plaster disks (types A and B) that contained no setting agent showed a significant loss in strength with either dry heat or gamma radiation sterilization. Those that contained potassium sulfate (K2SO4) did not show a significant loss in strength with either sterilization technique. In all comparisons (with and without K2SO4 and with either dry heat or gamma radiation sterilization) the type B plaster had higher compressive and tensile strengths than that of the type A plaster. The type A-1 plaster however, which is specially modified for accelerated setting, was comparable to that of type B with K2SO4 in both compressive and tensile strength (Table 1).


2019 ◽  
Author(s):  
Benjamin Egleston ◽  
Konstantin V. Luzyanin ◽  
Michael C. Brand ◽  
Rob Clowes ◽  
Michael E. Briggs ◽  
...  

Control of pore window size is the standard approach for tuning gas selectivity in porous solids. Here, we present the first example where this is translated into a molecular porous liquid formed from organic cage molecules. Reduction of the cage window size by chemical synthesis switches the selectivity from Xe-selective to CH<sub>4</sub>-selective, which is understood using <sup>129</sup>Xe, <sup>1</sup>H, and pulsed-field gradient NMR spectroscopy.


2019 ◽  
Author(s):  
Benjamin Egleston ◽  
Konstantin V. Luzyanin ◽  
Michael C. Brand ◽  
Rob Clowes ◽  
Michael E. Briggs ◽  
...  

Control of pore window size is the standard approach for tuning gas selectivity in porous solids. Here, we present the first example where this is translated into a molecular porous liquid formed from organic cage molecules. Reduction of the cage window size by chemical synthesis switches the selectivity from Xe-selective to CH<sub>4</sub>-selective, which is understood using <sup>129</sup>Xe, <sup>1</sup>H, and pulsed-field gradient NMR spectroscopy.


2018 ◽  
Author(s):  
Julia Miguel-Donet ◽  
Javier López-Cabrelles ◽  
Nestor Calvo Galve ◽  
Eugenio Coronado ◽  
Guillermo Minguez Espallargas

<p>Modification of the magnetic properties in a solid-state material upon external stimulus has attracted much attention in the recent years for their potential applications as switches and sensors. Within the field of coordination polymers, gas sorption studies typically focus on porous solids, with the gas molecules accommodating in the channels. Here we present a 1D non-porous coordination polymer capable of incorporating HCl gas molecules, which not only causes a reordering of its atoms in the solid state but also provokes dramatic changes in the magnetic behaviour. Subsequently, a further solid-gas transformation can occur with the extrusion of HCl gas molecules causing a second structural rearrangement which is also accompanied by modification in the magnetic path between the metal centres. Unequivocal evidence of the two-step magnetostructural transformation is provided by X-ray single-crystal diffraction.</p>


2021 ◽  
Vol 42 (2) ◽  
Author(s):  
Ubong Williams Robert ◽  
Sunday Edet Etuk ◽  
Okechukwu Ebuka Agbasi ◽  
Sylvester Andrew Ekong ◽  
Zaidoon Taha Abdulrazzaq ◽  
...  

Author(s):  
Antonio Maria D’Altri ◽  
Francesco Cannizzaro ◽  
Massimo Petracca ◽  
Diego Alejandro Talledo

AbstractIn this paper, a simple and practitioners-friendly calibration strategy to consistently link target panel-scale mechanical properties (that can be found in national standards) to model material-scale mechanical properties is presented. Simple masonry panel geometries, with various boundary conditions, are utilized to test numerical models and calibrate their mechanical properties. The calibration is successfully conducted through five different numerical models (most of them available in commercial software packages) suitable for nonlinear modelling of masonry structures, using nonlinear static analyses. Firstly, the panel stiffness calibration is performed, focusing the attention to the shear stiffness. Secondly, the panel strength calibration is conducted for several axial load ratios by attempts using as reference the target panel strength deduced by well-known analytical strength criteria. The results in terms of panel strength for the five different models show that this calibration strategy appears effective in obtaining model properties coherent with Italian National Standard and Eurocode. Open issues remain for the calibration of the post-peak response of masonry panels, which still appears highly conventional in the standards.


Author(s):  
Fulufhelo Nemavhola

AbstractRegional mechanics of the heart is vital in the development of accurate computational models for the pursuit of relevant therapies. Challenges related to heart dysfunctioning are the most important sources of mortality in the world. For example, myocardial infarction (MI) is the foremost killer in sub-Saharan African countries. Mechanical characterisation plays an important role in achieving accurate material behaviour. Material behaviour and constitutive modelling are essential for accurate development of computational models. The biaxial test data was utilised to generated Fung constitutive model material parameters of specific region of the pig myocardium. Also, Choi-Vito constitutive model material parameters were also determined in various myocardia regions. In most cases previously, the mechanical properties of the heart myocardium were assumed to be homogeneous. Most of the computational models developed have assumed that the all three heart regions exhibit similar mechanical properties. Hence, the main objective of this paper is to determine the mechanical material properties of healthy porcine myocardium in three regions, namely left ventricle (LV), mid-wall/interventricular septum (MDW) and right ventricle (RV). The biomechanical properties of the pig heart RV, LV and MDW were characterised using biaxial testing. The biaxial tests show the pig heart myocardium behaves non-linearly, heterogeneously and anisotropically. In this study, it was shown that RV, LV and MDW may exhibit slightly different mechanical properties. Material parameters of two selected constitutive models here may be helpful in regional tissue mechanics, especially for the understanding of various heart diseases and development of new therapies.


2021 ◽  
Author(s):  
Ahmed H Biby ◽  
Basant A. Ali ◽  
Nageh Allam

Intercalation of alkali metals has proved to be an effective approach for the enhancement of the energy storage performance in layered-2D materials. However, the research so far has been limited...


Author(s):  
Yugang Chen ◽  
Jingyu Zhai ◽  
Qingkai Han

In this paper, the damping capacity and the structural influence of the hard coating on the given bladed disk are optimized by the non-dominated sorting genetic algorithm (NSGA-II) coupled with the Kriging surrogate model. Material and geometric parameters of the hard coating are taken as the design variables, and the loss factors, frequency variations and weight gain are considered as the objective functions. Results of the bi-objective optimization are obtained as curved line of Pareto front, and results of the triple-objective optimization are obtained as Pareto front surface with an obvious frontier. The results can give guidance to the designer, which can help to achieve more superior performance of hard coating in engineering application.


Sign in / Sign up

Export Citation Format

Share Document