Molecular interactions of ribosomal components. IV: Cooperative interactions during assembly in vitro

1973 ◽  
Vol 1 (2) ◽  
pp. 105-111 ◽  
Author(s):  
M. Green ◽  
C. G. Kurland
2018 ◽  
Vol 105 ◽  
pp. 371-383 ◽  
Author(s):  
Carolina Estefanía Chávez-Murillo ◽  
Jorge Ivan Veyna-Torres ◽  
Luisa María Cavazos-Tamez ◽  
Julián de la Rosa-Millán ◽  
Sergio Othon Serna-Saldívar

2009 ◽  
Vol 421 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Dina Grohmann ◽  
Angela Hirtreiter ◽  
Finn Werner

Archaeal and eukaryotic RNAPs (DNA-dependent RNA polymerases) are complex multi-subunit enzymes. Two of the subunits, F and E, which together form the F/E complex, have been hypothesized to associate with RNAP in a reversible manner during the transcription cycle. We have characterized the molecular interactions between the F/E complex and the RNAP core. F/E binds to RNAP with submicromolar affinity and is not in a dynamic exchange with unbound F/E.


Author(s):  
Jainey James ◽  
Divya Jyothi ◽  
Sneh Priya

Aims: The present study aim was to analyse the molecular interactions of the phytoconstituents known for their antiviral activity with the SARS-CoV-2 nonstructural proteins such as main protease (6LU7), Nsp12 polymerase (6M71), and Nsp13 helicase (6JYT). The applied in silico methodologies was molecular docking and pharmacophore modeling using Schrodinger software. Methods: The phytoconstituents were taken from PubChem, and SARS-CoV-2 proteins were downloaded from the protein data bank. The molecular interactions, binding energy, ADMET properties and pharmacophoric features were analysed by glide XP, prime MM-GBSA, qikprop and phase application of Schrodinger respectively. The antiviral activity of the selected phytoconstituents was carried out by PASS predictor, online tools. Results: The docking score analysis showed that quercetin 3-rhamnoside (-8.77 kcal/mol) and quercetin 3-rhamnoside (-7.89 kcal/mol) as excellent products to bind with their respective targets such as 6LU7, 6M71 and 6JYT. The generated pharmacophore hypothesis model validated the docking results, confirming the hydrogen bonding interactions of the amino acids. The PASS online tool predicted constituent's antiviral potentials. Conclusion: The docked phytoconstituents showed excellent interactions with the SARS-CoV-2 proteins, and on the outset, quercetin 3-rhamnoside and quercetin 7-rhamnoside have well-interacted with all the three proteins, and these belong to the plant Houttuynia cordata. The pharmacophore hypothesis has revealed the characteristic features responsible for their interactions, and PASS prediction data has supported their antiviral activities. Thus, these natural compounds could be developed as lead molecules for antiviral treatment against SARS-CoV-2. Further in-vitro and in-vivo studies could be carried out to provide better drug therapy.


2005 ◽  
Vol 391 (2) ◽  
pp. 185-190 ◽  
Author(s):  
Renu Wadhwa ◽  
Syuichi Takano ◽  
Kamaljit Kaur ◽  
Satoshi Aida ◽  
Tomoko Yaguchi ◽  
...  

Mortalin/mtHsp70 (mitochondrial Hsp70) and HSP60 (heat-shock protein 60) are heat-shock proteins that reside in multiple subcellular compartments, with mitochondria being the predominant one. In the present study, we demonstrate that the two proteins interact both in vivo and in vitro, and that the N-terminal region of mortalin is involved in these interactions. Suppression of HSP60 expression by shRNA (short hairpin RNA) plasmids caused the growth arrest of cancer cells similar to that obtained by suppression of mortalin expression by ribozymes. An overexpression of mortalin, but not of HSP60, extended the in vitro lifespan of normal fibroblasts (TIG-1). Taken together, this study for the first time delineates: (i) molecular interactions of HSP60 with mortalin; (ii) their co- and exclusive localizations in vivo; (iii) their involvement in tumorigenesis; and (iv) their functional distinction in pathways involved in senescence.


1995 ◽  
Vol 15 (9) ◽  
pp. 4683-4693 ◽  
Author(s):  
R J Austin ◽  
M D Biggin

We examined the mechanism by which the C-terminal 236 amino acids of the even-skipped protein (region CD) repress transcription. A fusion protein, CDGB, was created that contains region CD fused to the glucocorticoid receptor DNA binding domain. This protein repressed transcription in an in vitro system containing purified fractions of the RNA polymerase II general transcription factors, and repression was dependent upon the presence of high-affinity glucocorticoid receptor binding sites in the promoter. Repression by CDGB was prevented when the promoter DNA was preincubated with TFIID or TBP, whereas preincubation of the template DNA with CDGB prevented TFIID binding. Together, these results strongly imply that CDGB represses transcription by inhibiting TFIID binding, and further experiments suggested a mechanism by which this may occur. Region CD can mediate cooperative interactions between repressor molecules such that molecules bound at the glucocorticoid receptor binding sites stabilize binding of additional CDGB molecules to low-affinity binding sites throughout the basal promoter. Binding to some of these low-affinity sites was shown to contribute to repression. Further experiments suggested that the full-length eve protein also represses transcription by the same mechanism. We speculate that occupancy of secondary sites within the basal promoter by CDGB or the eve protein inhibits subsequent TFIID binding to repress transcription, a mechanism we term cooperative blocking.


1975 ◽  
Vol 141 (1) ◽  
pp. 263-268 ◽  
Author(s):  
DH Katz ◽  
M Graves ◽  
ME Dorf ◽  
H Dimuzio ◽  
B Benacerraf

The results of this study provide compelling evidence for the existence of the gene or genes controlling optimal T-B-cell cooperative interactions in the designated I region of the H-2 gene complex. Previously, we have speculated that the relevant gene(s) involved may well be located in this region based on several observations from our earlier work in this area (3, 5, 6). Thus, in the preceding paper, we showed that T and B cells from B10.BR and A strain mice developed effective cooperative interactions in vitro to DNP-KLH in a system identical to the one reported herein. Since these mice differ for genes in the S and D regions of H-2 but are identical for K and I region genes, we were able to localize the critical genes to the K-end of H-2.


Sign in / Sign up

Export Citation Format

Share Document