Role of brain catecholamines and 5-hydroxytryptamine in morphine induced temperature changes in normal and tolerant rats and mice

1980 ◽  
Vol 313 (2) ◽  
pp. 125-130 ◽  
Author(s):  
P. Slater ◽  
C. Blundell
2004 ◽  
Vol 78 (2) ◽  
pp. 247-253 ◽  
Author(s):  
Roberto Soares de Moura ◽  
Anna Amélia S Rios ◽  
Edmar J.A Santos ◽  
Ana Beatriz Amorim Nascimento ◽  
Ângela de Castro Resende ◽  
...  

2005 ◽  
Vol 289 (3) ◽  
pp. R680-R687 ◽  
Author(s):  
Carlos Feleder ◽  
Vit Perlik ◽  
Ying Tang ◽  
Clark M. Blatteis

We reported previously that the onset of LPS-induced fever, irrespective of its route of administration, is temporally correlated with the appearance of LPS in the liver and that splenectomy significantly increases both the febrile response to LPS and the uptake of LPS by Kupffer cells (KC). To further evaluate the role of the spleen in LPS fever production, we ligated the splenic vein and, 7 and 30 days later, monitored the core temperature changes over 6 h after intraperitoneal (ip) injection of LPS (2 μg/kg). Both the febrile response and the uptake of LPS by KC were significantly augmented. Like splenectomy, splenic vein ligation (SVL) increased the febrile response and LPS uptake by KC until the collateral circulation developed, suggesting that the spleen may normally contribute an inhibitory factor that limits KC uptake of LPS and thus affects the febrile response. Subsequently, to verify the presence of this factor, we prepared splenic extracts from guinea pigs pretreated with LPS (8 μg/kg ip) or pyrogen-free saline, homogenized and ultrafiltered them, and injected them intravenously into splenectomized (Splex) guinea pigs pretreated with LPS (8 μg/kg ip). The results confirmed our presumption that the splenic extract from LPS-treated guinea pigs inhibits the exaggerated febrile response and the LPS uptake by the liver of Splex guinea pigs, indicating the presence of a putative splenic inhibitory factor, confirming the participation of the spleen in LPS-induced fever, and suggesting the existence of a novel antihyperpyretic mechanism. Preliminary data indicate that this factor is a lipid.


1984 ◽  
Vol 246 (4) ◽  
pp. R441-R451 ◽  
Author(s):  
N. Heisler

The contributions of transmembrane and transepithelial ion transfer processes and of nonbicarbonate buffering to the in vivo acid-base regulation have been evaluated. Model calculations were performed utilizing experimental data on transepithelial transfer of ions relevant for the acid-base regulation, the intracellular buffering properties of fish tissues, and the behavior of intracellular and extracellular pH and bicarbonate concentration with changes of temperature. The results of these studies indicate that the changes in the pK values of physiological nonbicarbonate buffers with changes in temperature support the adjustment of pH to lower values with rising temperature; however, transmembrane and transepithelial ion transfer mechanisms determine the acid-base regulation of intracellular and extracellular compartments.


2020 ◽  
Author(s):  
Zihao Zhu ◽  
Marcel Quint ◽  
Muhammad Usman Anwer

SummaryPredictable changes in light and temperature during a diurnal cycle are major entrainment cues that enable the circadian clock to generate internal biological rhythms that are synchronized with the external environment. With the average global temperature predicted to keep increasing, the intricate light-temperature coordination that is necessary for clock functionality is expected to be seriously affected. Hence, understanding how temperature signals are perceived by the circadian clock has become an important issue, especially in light of climate change scenarios. In Arabidopsis, the clock component EARLY FLOWERING 3 (ELF3) not only serves as an essential light Zeitnehmer, but also functions as a thermosensor participating in thermomorphogenesis. However, the role of ELF3 in temperature entrainment of the circadian clock is not fully understood. Here, we report that ELF3 is essential for delivering temperature input to the clock. We demonstrate that in the absence of ELF3, the oscillator was unable to properly respond to temperature changes, resulting in an impaired gating of thermoresponses. Consequently, clock-controlled physiological processes such as rhythmic growth and cotyledon movement were disturbed. Together, our results reveal that ELF3 is an essential Zeitnehmer for temperature sensing of the oscillator, and thereby for coordinating the rhythmic control of thermoresponsive physiological outputs.


2020 ◽  
Vol 8 (3) ◽  
pp. 637-659
Author(s):  
David Mair ◽  
Alessandro Lechmann ◽  
Romain Delunel ◽  
Serdar Yeşilyurt ◽  
Dmitry Tikhomirov ◽  
...  

Abstract. Denudation of steep rockwalls is driven by rock fall processes of various sizes and magnitudes. Rockwalls are sensitive to temperature changes mainly because thermo-cryogenic processes weaken bedrock through fracturing, which can precondition the occurrence of rock fall. However, it is still unclear how the fracturing of rock together with cryogenic processes impacts the denudation processes operating on steep rockwalls. In this study, we link data on long-term rockwall denudation rates at the Eiger (Central Swiss Alps) with the local bedrock fabric and the reconstructed temperature conditions at these sites, which depend on the insolation pattern. We then estimate the probability of bedrock for failure through the employment of a theoretical frost cracking model. The results show that the denudation rates are low in the upper part of the NW rockwall, but they are high both in the lower part of the NW rockwall and on the SE face, despite similar bedrock fabric conditions. The frost cracking model predicts a large difference in cracking intensity from ice segregation where the inferred efficiency is low in the upper part of the NW rockwall but relatively large on the lower section of the NW wall and on the SE rock face of the Eiger. We explain this pattern by the differences in insolation and temperature conditions at these sites. Throughout the last millennium, temperatures in bedrock have been very similar to the present. These data thus suggest the occurrence of large contrasts in microclimate between the NW and SE walls of the Eiger, conditioned by differences in insolation. We use these contrasts to explain the relatively low denudation rates in the upper part of the NW rockwall and the rapid denudation in the SW face and in the lower part of the NW rock face where frost cracking is more efficient.


Author(s):  
J. Hill ◽  
J.D. Leaver

Whole crop wheat (WCW) is a relatively new crop as a feed for dairy cows, and little information is available on its dry matter yield and nutritive value relative to stage of growth at harvest. Also, the role of urea (which hydrolyses to ammonia in the crop) addition in reducing fermentation and aerobic spoilage losses has not been investigated.The aim of this experiment was to examine three stages of growth at harvest for WCW, with and without urea.An area of winter wheat (cv Fortress) was cut (5 cm above ground) at three growth stages (GS 49, 71 and 87). The resultant forages were chopped through a precision-chop harvester and stored in air-tight barrels of 0.225 m3 capacity. Urea was added at 0 and 40 g/kgDM at each stage of growth and there were three replicates of each treatment. Thermocouples placed centrally were used to monitor temperature changes. The mini silos held approximately 100 kg of forages and they were opened after 90 days. Vertical cores were taken as samples and the mini silos were left open for a further 18 days to assess aerobic deterioration.


1989 ◽  
Vol 257 (1) ◽  
pp. R21-R28
Author(s):  
M. C. Curras ◽  
J. A. Boulant

To determine the role of the electrogenic Na+-K+ pump in neuronal thermosensitivity, single-unit activity was recorded in rat hypothalamic tissue slices before, during, and after perfusions containing 10(-5) or 10(-6) M ouabain, a specific pump inhibitor. Most neurons were recorded in the preoptic-anterior hypothalamus. Some neurons were also tested with high magnesium-low calcium perfusions to determine ouabain's effects on neuronal activity during synaptic blockade. When the neurons were characterized according to thermosensitivity, 24% were warm sensitive, 8% were cold sensitive, and 68% were temperature insensitive. Ouabain increased the firing rate of 60% of all neurons. Ouabain did not reduce the thermosensitivity of cold-sensitive and warm-sensitive neurons; however, temperature-insensitive neurons became more warm sensitive during ouabain perfusion. This increase in warm sensitivity did not occur with ouabain plus high Mg2+-low Ca2+ perfusion, suggesting that Ca2+ is important in this response. These results indicate that the Na-K pump is not responsible for the thermosensitivity of hypothalamic cold-sensitive or warm-sensitive neurons; however, this pump may be actively employed by many neurons that remain insensitive to temperature changes.


Sign in / Sign up

Export Citation Format

Share Document