Stratospheric ozone variations in the northern and the southern hemisphere during the period 1957?1990

1993 ◽  
Vol 60 (2) ◽  
pp. 109-125 ◽  
Author(s):  
John Xanthakis ◽  
Constantine Poulakos ◽  
Christos S. Zerefos
2015 ◽  
Vol 15 (13) ◽  
pp. 19161-19196
Author(s):  
K. A. Stone ◽  
O. Morgenstern ◽  
D. J. Karoly ◽  
A. R. Klekociuk ◽  
W. J. R. French ◽  
...  

Abstract. Chemistry climate models are important tools for addressing interactions of composition and climate in the Earth System. In particular, they are used for assessing the combined roles of greenhouse gases and ozone in Southern Hemisphere climate and weather. Here we present an evaluation of the Australian Community Climate and Earth System Simulator-Chemistry Climate Model, focusing on the Southern Hemisphere and the Australian region. This model is used for the Australian contribution to the international Chemistry-Climate Model Initiative, which is soliciting hindcast, future projection and sensitivity simulations. The model simulates global total column ozone (TCO) distributions accurately, with a slight delay in the onset and recovery of springtime Antarctic ozone depletion, and consistently higher ozone values. However, October averaged Antarctic TCO from 1960 to 2010 show a similar amount of depletion compared to observations. A significant innovation is the evaluation of simulated vertical profiles of ozone and temperature with ozonesonde data from Australia, New Zealand and Antarctica from 38 to 90° S. Excess ozone concentrations (up to 26.4 % at Davis during winter) and stratospheric cold biases (up to 10.1 K at the South Pole) outside the period of perturbed springtime ozone depletion are seen during all seasons compared to ozonesondes. A disparity in the vertical location of ozone depletion is seen: centered around 100 hPa in ozonesonde data compared to above 50 hPa in the model. Analysis of vertical chlorine monoxide profiles indicates that colder Antarctic stratospheric temperatures (possibly due to reduced mid-latitude heat flux) are artificially enhancing polar stratospheric cloud formation at high altitudes. The models inability to explicitly simulated supercooled ternary solution may also explain the lack of depletion at lower altitudes. The simulated Southern Annular Mode (SAM) index compares well with ERA-Interim data. Accompanying these modulations of the SAM, 50 hPa zonal wind differences between 2001–2010 and 1979–1998 show increasing zonal wind strength southward of 60° S during December for both the model simulations and ERA-Interim data. These model diagnostics shows that the model reasonably captures the stratospheric ozone driven chemistry-climate interactions important for Australian climate and weather while highlighting areas for future model development.


2007 ◽  
Vol 85 (11) ◽  
pp. 1287-1300 ◽  
Author(s):  
H Bencherif ◽  
L El Amraoui ◽  
N Semane ◽  
S Massart ◽  
D Vidyaranya Charyulu ◽  
...  

Following an exceptionally active winter, the 2002 Southern Hemisphere (SH) major warming occurred in late September. It was preceded by three minor warming events that occurred in late August and early September, and yielded vortex split and break-down over Antarctica. Ozone (O3 and nitrous oxide (N2O) profiles obtained during that period of time (15 August – 4 October) by the Sub-Millimetre Radiometer (SMR) aboard the Odin satellite are assimilated into MOCAGE (Modélisation Isentrope du transport Mésoéchelle de l'Ozone Stratosphérique par Advection), a global three-dimensional chemistry transport model of Météo-France. The assimilated algorithm is a three-dimensional-FGAT built by the European Centre for Research and Advance Training in Scientific Computation (CERFACS) using the PALM (Projet d'Assimilation par Logiciel Multi-méthode) software. The assimilated O3 and N2O profiles and isentropic distributions are compared to ground-based measurements (LIDAR and balloon-sonde) and to maps of advected potential vorticity (APV). The latter is computed by the MIMOSA (Modélisation Isentrope du transport Mésoéchelle de l'Ozone Stratosphérique par Advection) model, a high-resolution advection transport model, using meteorological fields from the European Centre for Medium-Range Weather Forecasts (ECMWF). It is found that O3 concentrations retrieved by the MOCAGE–PALM assimilation system show a reasonably good agreement in the 20–28 km height range when compared with ground-based profiles. This altitude range corresponds to the intersection between the MOCAGE levels (0–28 km) and SMR O3 retrievals (20–50 km). Moreover, comparison of N2O assimilated fields with MIMOSA APV maps indicates that the dramatic split and subsequent break-down of the polar vortex, as well as the associated mixing of mid- and low-latitude stratospheric air, are well resolved and pictured by MOCAGE–PALM. The present study demonstrates also that the tremendous dynamics and associated polar vortex deformations during the 2002-austral-winter have modified ozone and nitrous oxide distributions not only at the vicinity of the polar vortex, but over topics and subtropics as well. PACS Nos.: 92.60.H–, 92.60.Hd, 92.70.Cp, 92.70.Gt


2020 ◽  
Vol 20 (6) ◽  
pp. 3663-3668
Author(s):  
Ellis Remsberg ◽  
V. Lynn Harvey ◽  
Arlin Krueger ◽  
Larry Gordley ◽  
John C. Gille ◽  
...  

Abstract. The Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) instrument operated from 25 October 1978 through 28 May 1979. This note focuses on its Version 6 (V6) data and indications of ozone loss in the lower stratosphere of the Southern Hemisphere subpolar region during the last week of October 1978. We provide profiles and maps that show V6 ozone values of only 2 to 3 ppmv at 46 hPa within the edge of the polar vortex near 60∘ S from late October through mid-November 1978. There are also low values of V6 nitric acid (∼3 to 6 ppbv) and nitrogen dioxide (< 1 ppbv) at the same locations, indicating that conditions were suitable for a chemical loss of Antarctic ozone some weeks earlier. These “first light” LIMS observations provide the earliest space-based view of conditions within the lower stratospheric ozone layer of the southern polar region in springtime.


1997 ◽  
Vol 102 (D1) ◽  
pp. 1533-1539 ◽  
Author(s):  
Petteri Taalas ◽  
Juhani Damski ◽  
Esko Kyrö ◽  
Maximo Ginzburg ◽  
Gustavo Talamoni

2016 ◽  
Vol 58 (10) ◽  
pp. 2080-2089 ◽  
Author(s):  
Marta Zossi de Artigas ◽  
Elda M. Zotto ◽  
Gustavo A. Mansilla ◽  
Patricia Fernandez de Campra

2016 ◽  
Vol 16 (16) ◽  
pp. 10455-10467 ◽  
Author(s):  
Lorena Moreira ◽  
Klemens Hocke ◽  
Francisco Navas-Guzmán ◽  
Ellen Eckert ◽  
Thomas von Clarmann ◽  
...  

Abstract. A multilinear parametric regression analysis was performed to assess the seasonal and interannual variations of stratospheric ozone profiles from the GROMOS (GROund-based Millimeter-wave Ozone Spectrometer) microwave radiometer at Bern, Switzerland (46.95° N, 7.44° E; 577 m). GROMOS takes part in the Network for the Detection of Atmospheric Composition Change (NDACC). The study covers the stratosphere from 50 to 0.5 hPa (from 21 to 53 km) and extends over the period from January 1997 to January 2015. The natural variability was fitted during the regression analysis through the annual and semi-annual oscillations (AO, SAO), the quasi-biennial oscillation (QBO), the El Niño–Southern Oscillation (ENSO) and the solar activity cycle. Seasonal ozone variations mainly appear as an annual cycle in the middle and upper stratosphere and a semi-annual cycle in the upper stratosphere. Regarding the interannual variations, they are primarily present in the lower and middle stratosphere. In the lower and middle stratosphere, ozone variations are controlled predominantly by transport processes, due to the long lifetime of ozone, whereas in the upper stratosphere its lifetime is relatively short and ozone is controlled mainly by photochemistry. The present study shows agreement in the observed naturally induced ozone signatures with other studies. Further, we present an overview of the possible causes of the effects observed in stratospheric ozone due to natural oscillations at a northern midlatitude station. For instance regarding the SAO, we find that polar winter stratopause warmings contribute to the strength of this oscillation since these temperature enhancements lead to a reduction in upper stratospheric ozone. We have detected a strong peak amplitude of about 5 % for the solar cycle in lower stratospheric ozone for our 1.5 cycles of solar activity. Though the 11-year ozone oscillation above Bern is in phase with the solar cycle, we suppose that the strong amplitude is partly due to meteorological disturbances and associated ozone anomalies in the Northern Hemisphere. Further, our observational study gave the result that ozone above Bern is anti-correlated with the ENSO phenomenon in the lower stratosphere and correlated in the middle stratosphere.


2020 ◽  
Author(s):  
Sabine Haase ◽  
Jaika Fricke ◽  
Tim Kruschke ◽  
Sebastian Wahl ◽  
Katja Matthes

Abstract. Southern hemisphere lower stratospheric ozone depletion has been shown to lead to a poleward shift of the tropospheric jet stream during austral summer, influencing surface atmosphere and ocean conditions, such as surface temperatures and sea ice extent. The characteristics of stratospheric and tropospheric responses to ozone depletion, however, differ largely among climate models depending on the representation of ozone in the models. The most accurate way to represent ozone in a model is to calculate it interactively. However, due to computational costs, in particular for long-term coupled ocean-atmosphere model integrations, the more common way is to prescribe ozone from observations or calculated model fields. Here, we investigate the difference between an interactive and a specified chemistry version of the same atmospheric model in a fully-coupled setup using a 9-member chemistry-climate model ensemble. In the specified chemistry version of the model the ozone fields are prescribed using the output from the interactive chemistry model version. In contrast to earlier studies, we use daily-resolved ozone fields in the specified chemistry simulations to achieve a better comparability between the ozone forcing with and without interactive chemistry. We find that although the short-wave heating rate trend in response to ozone depletion is the same in the different chemistry settings, the interactive chemistry ensemble shows a stronger trend in polar cap stratospheric temperatures (by about 0.7 K per decade) and circumpolar stratospheric zonal mean zonal winds (by about 1.6 m/s per decade) as compared to the specified chemistry ensemble. This difference between interactive and specified chemistry in the stratospheric response to ozone depletion also affects the tropospheric response, namely the poleward shift of the tropospheric jet stream. We attribute part of these differences to the missing representation of feedbacks between chemistry and dynamics in the specified chemistry ensemble, which affect the dynamical heating rates, and part of it to the lack of spatial asymmetries in the prescribed ozone fields. This effect is investigated using a sensitivity ensemble that was forced by a three-dimensional instead of a two–dimensional ozone field. This study emphasizes the value of interactive chemistry for the representation of the southern hemisphere tropospheric jet response to ozone depletion and infers that for periods with strong ozone variability (trends) the details of the ozone forcing can be crucial for representing southern hemispheric climate variability.


2019 ◽  
Author(s):  
Ellis Remsberg ◽  
V. Lynn Harvey ◽  
Arlin Krueger ◽  
Larry Gordley ◽  
John C. Gille ◽  
...  

Abstract. The Nimbus 7 limb infrared monitor of the stratosphere (LIMS) instrument operated from October 25, 1978, through May 28, 1979. This paper focuses on its Version (V6) data for the lower stratosphere of the southern hemisphere, subpolar region during the last week of October 1978. We provide profiles and maps that show V6 ozone values of only 2 to 3 ppmv within the edge of the polar vortex at 46 hPa near 60° S from late October through mid-November 1978. There are also low values of V6 nitric acid (∼ 3 to 6 ppbv) and nitrogen dioxide (


2002 ◽  
Vol 2 (3) ◽  
pp. 507-523 ◽  
Author(s):  
C. Puliafito ◽  
S. Enrique Puliafito ◽  
G. K. Hartmann

Abstract. Since November 1993 up to present from Benegas Station, Mendoza, Argentina (site of IEMA Institute) and from high locations in the Andes region, ground based radiometric measurements of stratospheric ozone and tropospheric water vapor have been achieved. Ozone measurements are performed by using a radiometer-spectrometer tuned at 142 GHz and tropospheric water vapor by means of a 92 GHz radiometer. In this paper two case studies of large stratospheric ozone variations due to dynamical processes will be presented. These processes are very likely associated to gravity waves, generated by airflow over the Andes Mountains, or due to Zonda wind effect.


Sign in / Sign up

Export Citation Format

Share Document