Glass fiber with a high modulus of elasticity

1962 ◽  
Vol 19 (4) ◽  
pp. 228-229
Author(s):  
R∘ Tiede
Alloy Digest ◽  
2020 ◽  
Vol 69 (10) ◽  

Abstract Wieland Duro Tungsten is unalloyed tungsten produced from pressed-and-sintered billets. The high melting point of tungsten makes it an obvious choice for structural applications exposed to very high temperatures. Tungsten is used at lower temperatures for applications that can benefit from its high density, high modulus of elasticity, or radiation shielding capability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on machining. Filing Code: W-34. Producer or source: Wieland Duro GmbH.


2016 ◽  
Vol 36 (6) ◽  
pp. 464-475 ◽  
Author(s):  
Minkwan Ju ◽  
Gitae Park ◽  
Sangyun Lee ◽  
Cheolwoo Park

In this study, we experimentally investigated the bond performance of a glass fiber-reinforced polymer hybrid bar with a core section comprising a deformed steel bar and a sand coating. The glass fiber-reinforced polymer and deformed steel hybrid bar (glass fiber-reinforced polymer hybrid bar) can contribute to longer durability and better serviceability of reinforced concrete members because of the increased modulus of elasticity provided by the deformed steel bar. Uniaxial tensile tests in compliance with ASTM D 3916 showed that the modulus of elasticity of the glass fiber-reinforced polymer hybrid bar was enhanced up to three times. For the bond test, a total of 30 specimens with various sand-coating and surface design parameters such as the size of the sand particles (0.6 mm and 0.3 mm), sand-coating type (partially or completely), number of strands of fiber ribs (6 and 10), and pitch space (11.4 mm to 29.1 mm) of the fiber ribs were tested. The completely sand-coated glass fiber-reinforced polymer hybrid bar exhibited a higher bond strength (90.5%) than the deformed steel bar and a reasonable mode of failure in concrete splitting. A modification parameter to the Eligehausen, Popov, and Bertero (BPE) model is suggested based on the representative experimental tests. The bond stress–slip behavior suggested by the modified BPE model in this study was in reasonable agreement with the experimental results.


2014 ◽  
Vol 11 ◽  
pp. 03012 ◽  
Author(s):  
H.S. Abdelgader ◽  
A.S. Elbaden

The aim of present work is theoretical analysis of high values of reinforcement degree of nanocomposites polyurethane/carbon nanotube. For this two micromechanical models were used, showing identical results. The indicated models demonstrated, that densely-packed high-modulus interfacial regions, which serve the same reinforcing element of nanocomposite structure, as and nanofiller (carbon nanotubes) actually. The formation of interfacial regions defines by strong interactions polymer matrix – nanofiller. This means that nanofiller efficiency is controlled by its ability to generate densely-packed interfacial regions. It is important also to point out, that any micromechanical model, including mixtures rule, describes correctly modulus of elasticity of polymer nanocomposites, if in it real, but not nominal, characteristics of nanofiller were used. The content of interfacial regions in nanocomposite is controlled by structure of nanofiller. This allows to obtain important practical conclusion – for realization maximum degree of reinforcement it is necessary to cause structure of nanofiller, allowing to generate greatest content of interfacial regions. Absence of interfacial regions results to reduction of modulus of elasticity of nanocomposite in comparison with matrix polymer.


2018 ◽  
Vol 7 (4.37) ◽  
pp. 211
Author(s):  
Rawa Shakir Muwashee ◽  
Hamid Athab Al-Jameel ◽  
Qusay Abdulhameed Jabai

Composite  concrete such as fiber reinforced concrete is widely used in structures because of its excellent properties such as compressive, flexural and tensile strengths and also high modulus of elasticity because it gives lower strain values under loading and too fewer cracks propagation. In this study, Aluminum strips was prepared by cutting the Coca- Cola cans as strips in concrete. The reason of using Aluminum strip is low density and good tensile strength (about 310 MPa) and also has a good ductility.  The results of this study show good improvements in compressive, tensile and  flexural strengths using 117 tested specimens for both concrete and mortar. In brief, about 22 % increment in compressive strength of Aluminum strip concrete  and flexural strength increases from 3.31 MPa to 11.20 MPa when using Aluminum strips with 2.5 % by volume of concrete. The reinforced mortar with Aluminum strips demonstrates significant increments which are 27% for compressive strength and more than 100% for both flexural and tensile strengths comparing with reference mix.  


1946 ◽  
Vol 50 (426) ◽  
pp. 390-415 ◽  
Author(s):  
G. V. Raynor

Beryllium, though of increasing application in the metallurgical and electrical industries, must still be classed as a relatively uncommon element. This would appear to be chiefly because no large scale application of the metal has yet been made; most commercial applications involve the addition of small amounts of beryllium to other metals, notably copper.If a large scale use for beryllium were to be discovered, there would be little difficulty in the production of sufficient metal to fulfil a reasonable .demand. Its ores are widespread, but unfortunately are seldom found in heavy local concentrations. The processing of these ores is somewhat difficult on a commercial scale, but not prohibitively so. Extensive researches have been made on these problems, because of the incentive given by the exceptional “lightness” of beryllium, its high melting point and particularly, by its high modulus of elasticity.


Sign in / Sign up

Export Citation Format

Share Document