Quenching of arc welded pipe from the intercritical range

1977 ◽  
Vol 19 (1) ◽  
pp. 64-66
Author(s):  
V. V. Kirichenko ◽  
I. I. Burnyashev ◽  
V. V. Chelyshev ◽  
V. V. Tarasov

Author(s):  
Svetlana N. Zueva ◽  
◽  
Sergey V. Soya ◽  
Olga A. Zadubrovskaya ◽  
◽  
...  




2021 ◽  
Vol 1820 (1) ◽  
pp. 012086
Author(s):  
Huaishu Hou ◽  
Ding Lu ◽  
Shiwei Zhang ◽  
Yi Zhang ◽  
Chaolei Cheng


2017 ◽  
Vol 94 ◽  
pp. 158-165 ◽  
Author(s):  
John H.L. Pang ◽  
Hsin Jen Hoh ◽  
Kin Shun Tsang ◽  
Jason Low ◽  
Shawn Caleb Kong ◽  
...  


2004 ◽  
Vol 17 (1) ◽  
pp. 29-51 ◽  
Author(s):  
Inge Lotsberg
Keyword(s):  


Author(s):  
Abul Fazal M. Arif ◽  
Ahmad S. Al-Omari ◽  
Anwar K. Sheikh ◽  
Yagoub Al-Nassar ◽  
M. Anis

Double submerged spiral-welded pipe (SWP) is used extensively throughout the world for large-diameter pipelines. Fabrication-induced residual stresses in spiral welded pipe have received increasing attention in gas, oil and petrochemical industry. Several studies reported in the literature verify the critical role of residual stresses in the failure of these pipes. Therefore, it is important that such stresses are accounted for in safety assessment procedures such as the British R6 and BS7910. This can be done only when detailed information on the residual stress distribution in the component is known. In industry, residual stresses in spiral welded pipe are measured experimentally by means of destructive techniques known as Ring Splitting Test. In this study, statistical analysis and linear-regression modeling were used to study the effect of several structural, material and welding parameters on ring splitting test opening for spiral welded pipes. The experimental results were employed to develop an appropriate regression equation, and to predict the residual stress on the spiral welded pipes. It was found that the developed regression equation explains 36.48% of the variability in the ring opening. In the second part, a 3-D finite element model is presented to perform coupled-field analysis of the welding of spiral pipe. Using this model, temperature as well as stress fields in the region of the weld edges is predicted.



2013 ◽  
Vol 753 ◽  
pp. 538-541 ◽  
Author(s):  
Haytham M. Al Jabr ◽  
John G. Speer ◽  
David K. Matlock ◽  
Peng Zhang ◽  
Sang Hyun Cho

The effects of microstructure and texture on the toughness anisotropy of two API-X70 pipeline steels were investigated. One steel contained no nickel (0Ni) and the other contained 0.3 wt pct nickel (0.3Ni). Charpy V-notch impact testing was conducted on plate samples for both steels in three directions: longitudinal (L), transverse (T), and diagonal (D) with respect to the rolling direction. The microstructures of both steels were mixed and consisted of acicular ferrite, granular bainite, and small amounts of polygonal ferrite, with martensite-austenite and retained austenite islands as secondary phases. The ductile to brittle transition temperatures (DBTT) for the Charpy impact test were higher in the D direction for both plates, with a pronounced increase in the 0Ni steel. The anisotropy in toughness was mainly attributed to the crystallographic texture.



2012 ◽  
Vol 184-185 ◽  
pp. 701-706
Author(s):  
Ming Xing Qiu ◽  
Chuang Shao ◽  
Yong Zhou ◽  
Li Hua Yue

In order to determine the fatigue limits of two kinds of titanium alloy pipes connected by welding and rolling, fatigue tests were carried out by the Aero-Criterion which gives vibration fatigue test method and failure criteria. A laser-displacement-sensor was used at the free end and a strain-gauge at the root of the pipe specimen. The test result shows that the fatigue limit of the welded pipe is higher than the rolled one. In the end some new findings are listed according to the test.



Author(s):  
Nuria Sanchez ◽  
Özlem E. Güngör ◽  
Martin Liebeherr ◽  
Nenad Ilić

The unique combination of high strength and low temperature toughness on heavy wall thickness coils allows higher operating pressures in large diameter spiral welded pipes and could represent a 10% reduction in life cycle cost on long distance gas pipe lines. One of the current processing routes for these high thickness grades is the thermo-mechanical controlled processing (TMCP) route, which critically depends on the austenite conditioning during hot forming at specific temperature in relation to the aimed metallurgical mechanisms (recrystallization, strain accumulation, phase transformation). Detailed mechanical and microstructural characterization on selected coils and pipes corresponding to the X80M grade in 24 mm thickness reveals that effective grain size and distribution together with the through thickness gradient are key parameters to control in order to ensure the adequate toughness of the material. Studies on the softening behavior revealed that the grain coarsening in the mid-thickness is related to a decrease of strain accumulation during hot rolling. It was also observed a toughness detrimental effect with the increment of the volume fraction of M/A (martensite/retained austenite) in the middle thickness of the coils, related to the cooling practice. Finally, submerged arc weldability for spiral welded pipe manufacturing was evaluated on coil skelp in 24 mm thickness. The investigations revealed the suitability of the material for spiral welded pipe production, preserving the tensile properties and maintaining acceptable toughness values in the heat-affected zone. The present study revealed that the adequate chemical alloying selection and processing control provide enhanced low temperature toughness on pipes with excellent weldability formed from hot rolled coils X80 grade in 24 mm thickness produced at ArcelorMittal Bremen.



Sign in / Sign up

Export Citation Format

Share Document