Correlation of indices of extreme-pressure properties of oils when evaluated in four-ball friction tester and in IAE gear machine

1978 ◽  
Vol 14 (4) ◽  
pp. 281-285
Author(s):  
P. P. Zaskal'ko ◽  
V. I. Nekrasov ◽  
A. S. Terekhov
Author(s):  
Goutam Chandra Karar ◽  
Nipu Modak

The experimental investigation of reciprocating motion between the aluminum doped crumb rubber /epoxy composite and the steel ball has been carried out under Reciprocating Friction Tester, TR-282 to study the wear and coefficient of frictions using different normal loads (0.4Kg, 0.7Kgand1Kg), differentfrequencies (10Hz, 25Hz and 40Hz).The wear is a function of normal load, reciprocating frequency, reciprocating duration and the composition of the material. The percentage of aluminum presents in the composite changesbut the other components remain the same.The four types of composites are fabricated by compression molding process having 0%, 10%, 20% and 30% Al. The effect of different parameters such as normal load, reciprocating frequency and percentage of aluminum has been studied. It is observed that the wear and coefficient of friction is influenced by the parameters. The tendency of wear goes on decreasing with the increase of normal load and it is minimum for a composite having 10%aluminum at a normal load of 0.7Kg and then goes on increasing at higher loads for all types of composite due to the adhesive nature of the composite. The coefficient of friction goes on decreasing with increasing normal loads due to the formation of thin film as an effect of heat generation with normal load.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Kodanda Rama Rao Chebattina ◽  
V. Srinivas ◽  
N. Mohan Rao

The aim of the paper is to investigate the effect of size of multiwalled carbon nanotubes (MWCNTs) as additives for dispersion in gear oil to improve the tribological properties. Since long pristine MWCNTs tend to form clusters compromising dispersion stability, they are mildly processed in a ball mill to shorten the length and stabilized with a surfactant before dispersing in lubricant. Investigations are made to assess the effect of ball milling on the size and structure of MWCNTs using electron microscopy and Raman spectroscopy. The long and shortened MWCNTs are dispersed in EP 140 gear oil in 0.5% weight. The stability of the dispersed multiwalled carbon nanotubes is evaluated using light scattering techniques. The antiwear, antifriction, and extreme pressure properties of test oils are evaluated on a four-ball wear tester. It is found that ball milling of MWCNTs has a strong effect on the stability and tribological properties of the lubricant. From Raman spectroscopy, it is found that ball milling time of up to 10 hours did not produce any defects on the surface of MWCNTs. The stability of the lubricant and the antiwear, antifriction, and extreme pressure properties have improved significantly with dispersion shortened MWCNTs. Ball milling for longer periods produces defects on the surface of MWCNTs reducing their advantage as oil additives.


2020 ◽  
Vol 28 ◽  
pp. 873-885
Author(s):  
Alla V. Balueva ◽  
Ilia N. Dashevskiy ◽  
Jerry Magana

2021 ◽  
Vol 11 (15) ◽  
pp. 7121
Author(s):  
Shouke Li ◽  
Feipeng Xiao ◽  
Yunfeng Zou ◽  
Shouying Li ◽  
Shucheng Yang ◽  
...  

Wind tunnel tests are carried out for the Commonwealth Advisory Aeronautical Research Council (CAARC) high-rise building with a scale of 1:400 in exposure categories D. The distribution law of extreme pressure coefficients under different conditions is studied. Probability distribution fitting is performed on the measured area-averaged extreme pressure coefficients. The general extreme value (GEV) distribution is preferred for probability distribution fitting of extreme pressure coefficients. From the comparison between the area-averaged coefficients and the value from GB50009-2012, it is indicated that the wind load coefficients from GB50009-2012 may be non-conservative for the CAARC building. The area reduction effect on the extreme wind pressure is smaller than that on the mean wind pressure from the code. The recommended formula of the area reduction factor for the extreme pressure coefficient is proposed in this study. It is found that the mean and the coefficient of variation (COV) for the directionality factors are 0.85 and 0.04, respectively, when the orientation of the building is given. If the uniform distribution is given for the building’s orientation, the mean value of the directionality factors is 0.88, which is close to the directionality factor of 0.90 given in the Chinese specifications.


Lubricants ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 33
Author(s):  
Sravan K. Joysula ◽  
Anshuman Dube ◽  
Debdutt Patro ◽  
Deepak Halenahally Veeregowda

The extreme pressure (EP) behavior of grease is related to its additives that can prevent seizure. However, in this study following ASTM D2596 four-ball test method, the EP behavior of greases was modified without any changes to its additive package. A four-ball tester with position encoders and variable frequency drive system was used to control the speed ramp up time or delay in motor speed to demonstrate higher grease weld load and lower grease friction that were fictitious. A tenth of a second delay in speed ramp up time had showed an increase in the weld load from 7848 N to 9810 N for grease X and 6082 N to 9810 N for grease Y. Further increase in the speed ramp up time to 0.95 s showed that the greases passed the maximum load of 9810 N that was possible in the four-ball tester without seizure. The mechanism can be related to the delay in rise of local temperature to reach the melting point of steel required for full seizure or welding, that was theoretically attributed to an increase in heat loss as the speed ramp-up time was increased. Furthermore, the speed ramp up time increased the corrected load for grease X and Y. This resulted in lower friction for grease X and Y. This fictitious low friction can be attributed to decrease in surface roughness at higher extreme pressure or higher corrected load. This study suggests that speed ramp up time is a critical factor that should be further investigated by ASTM and grease manufacturers, to prevent the use of grease with fictitious EP behavior.


Lubricants ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 54
Author(s):  
Valdicleide Silva Mello ◽  
Marinalva Ferreira Trajano ◽  
Ana Emilia Diniz Silva Guedes ◽  
Salete Martins Alves

Additives are essential in lubricant development, improving their performance by the formation of a protective film, thus reducing friction and wear. Some such additives are extreme pressure additives. However, due to environmental issues, their use has been questioned because their composition includes sulfur, chlorine, and phosphorus. Nanoparticles have been demonstrated to be a suitable substitute for those additives. This paper aims to make a comparison of the tribological performance of conventional EP additives and oxides nanoparticles (copper and zinc) under boundary lubrication conditions. The additives (nanoparticles, ZDDP, and sulfur) were added to mineral and synthetic oils. The lubricant tribological properties were analyzed in the tribometer HFRR (high frequency reciprocating rig), and during the test, the friction coefficient and percentual of film formation were measured. The wear was analyzed by scanning electron microscopy. The results showed that the conventional EP additives have a good performance owing to their anti-wear and small friction coefficient in both lubricant bases. The oxides nanoparticles, when used as additives, can reduce the friction more effectively than conventional additives, and displayed similar behavior to the extreme pressure additives. Thus, the oxide nanoparticles are more environmentally suitable, and they can replace EP additives adapting the lubricant to current environmental requirements.


Sign in / Sign up

Export Citation Format

Share Document