Ultrasonic inspection of weld ends on large-diameter oil and gas-line pipe

Metallurgist ◽  
1978 ◽  
Vol 22 (3) ◽  
pp. 185-188
Author(s):  
A. N. Fateev ◽  
V. K. Bol'bot ◽  
A. A. Chekmarev ◽  
A. P. Stipura ◽  
V. S. Zagorul'ko
Author(s):  
Tom Zimmerman ◽  
Chris Timms ◽  
Jueren Xie ◽  
James Asante

This paper contains the results of an experimental and analytical research program to determine the compressive buckling resistance of large-diameter, spiral-welded linepipe. Buckling resistance is important for pipe intended for service in Arctic, oil and gas pipeline systems, where pipes may be subjected to high bending strains caused by various ground movement events. The experimental work consisted of four full-scale tests of 30-inch (762 mm) diameter pipe subjected to various combinations of internal pressure, axial force and bending. The pipe specimens were fabricated using two material grades (X70 and X80) and two D/t ratios (82 and 48). Finite element analyses of the four tests were conducted to develop a better understanding of specimen behavior. The results suggest that spiral welded linepipe is as good as longitudinally welded line pipe in terms of buckling capacity. The spiral weld seam was in no way detrimental to the pipe performance.


Author(s):  
Josef Avagianos ◽  
Kostas Papamantellos

The world production capacity on large-diameter welded pipe amounts to more than 12 million tons per year 20–25% are produced as spiral sub-arc welded (SAW) pipes, with the balance of 75–80% being longitudinal SAW pipes (from plates). For most spiral-weld producers, a sizeable portion of line pipe is for water transportation, rather than hydrocarbon. In the past, the relative structural weakness of spiral-welded pipe, due to larger welded area, limited the growth of its use in the oil industry. With the development of more advanced production technology, the acceptance of spiral-welded pipes in the oil and gas industry has increased significantly. In this paper, the principals of the spiral manufacturing technology from coil by the two-step-method are introduced and the innovations of Corinth Pipework’s production facility are outlined in detail, including the sophisticated NDT techniques and the Quality Management System.


2013 ◽  
Vol 753-755 ◽  
pp. 343-352
Author(s):  
Pin Yi Wang ◽  
Zong Yuan Mou

With the long-distance oil and gas pipelines are to development of the direction of large-diameter, high-pressure, high grade pipeline steel applications gradually become the trend of the development of the oil and gas pipeline construction. The welding process of the X100 line pipe which is about to industrial application is not yet to be determined. It is not clear that the affect to the weldability from the metallurgical composition, organization, performance, and other factors which would affect the site construction welding process and welding measures. In addition, it is not yet the discussion and analysis of the key technologies X100 line pipe-site welding process and defect types. In this paper, the X100 pipeline on-site application of welding technology research commenced work and studied the weldability and welding process of X100 which solve the field application of X100 pipeline steel pipe welding issues.


Author(s):  
Hidenori Shitamoto ◽  
Nobuyuki Hisamune

There are several methods currently being used to install offshore oil and gas pipelines. The reel-lay process is fast and one of the most effective offshore pipeline installation methods for seamless, ERW, and UOE line pipes with outside diameters of 18 inches or less. In the case of the reel-laying method, line pipes are subjected to plastic deformation multiplication during reel-laying. It is thus important to understand the change of the mechanical properties of line pipes before and after reel-laying. Therefore, full-scale reeling (FSR) simulations and small-scale reeling (SSR) simulations are applied as evaluation tests for reel-laying. In this study, FSR simulations were performed to investigate the effect of cyclic deformation on the mechanical properties of weldable 13Cr seamless line pipes. Furthermore, SSR simulations were performed to compare the results obtained by FSR simulations.


Author(s):  
Nuria Sanchez ◽  
Özlem E. Güngör ◽  
Martin Liebeherr ◽  
Nenad Ilić

The unique combination of high strength and low temperature toughness on heavy wall thickness coils allows higher operating pressures in large diameter spiral welded pipes and could represent a 10% reduction in life cycle cost on long distance gas pipe lines. One of the current processing routes for these high thickness grades is the thermo-mechanical controlled processing (TMCP) route, which critically depends on the austenite conditioning during hot forming at specific temperature in relation to the aimed metallurgical mechanisms (recrystallization, strain accumulation, phase transformation). Detailed mechanical and microstructural characterization on selected coils and pipes corresponding to the X80M grade in 24 mm thickness reveals that effective grain size and distribution together with the through thickness gradient are key parameters to control in order to ensure the adequate toughness of the material. Studies on the softening behavior revealed that the grain coarsening in the mid-thickness is related to a decrease of strain accumulation during hot rolling. It was also observed a toughness detrimental effect with the increment of the volume fraction of M/A (martensite/retained austenite) in the middle thickness of the coils, related to the cooling practice. Finally, submerged arc weldability for spiral welded pipe manufacturing was evaluated on coil skelp in 24 mm thickness. The investigations revealed the suitability of the material for spiral welded pipe production, preserving the tensile properties and maintaining acceptable toughness values in the heat-affected zone. The present study revealed that the adequate chemical alloying selection and processing control provide enhanced low temperature toughness on pipes with excellent weldability formed from hot rolled coils X80 grade in 24 mm thickness produced at ArcelorMittal Bremen.


Author(s):  
I. Yu. Pyshmintsev ◽  
D. A. Pumpyanskyi ◽  
Yu. O. Kamenskih ◽  
I. N. Poznyakovsky ◽  
I. L. Permyakov

Strengthening mechanisms applied for modern line pipe steel design were studied. Low carbon steels alloyed with Mn, Mo, V, Nb processed by the way of controlled rolling were developed for spiral welded X65-X80 line pipes up to 1420 mm diameter. Formation of the microstructure during steel processing was studied. The effects of typical microstructure for the steels on mechanical properties, strain hardening behavior and Bauschinger effect were studied. Main metallurgical factors affecting on strength measured in plates and pipes were revealed using physical and computer simulations.


2021 ◽  
Author(s):  
Niels Pörtzgen ◽  
Ola Bachke Solem

Abstract During the construction of pipelines for the transportation of oil and gas, the inspection of girth welds is a critical step to ensure the integrity and thereby the safety and durability of the pipeline. In this paper we present an advanced technology ‘IWEX’ for the non-destructive testing of welds based on 2D and 3D ultrasonic imaging. This technology allows for safe, fast, and accurate inspection whereby the results are presented comprehensively. This will be illustrated with results from a recent project. The IWEX technology is based on an ultrasonic inspection concept, whereby ‘fingerprints’ of ultrasonic signals are recorded, also referred to as ‘full matrix capture’ (FMC) data. Then, an image area is defined, consisting out of pixels over an area large enough to cover the inspection volume. With the FMC data, image amplitudes are calculated for each pixel so that the shape of geometry (back wall, front wall, cap, and root) and possible indications are revealed. As opposed to traditional ultrasonic testing strategies, the detection and sizing of indications is therefore less dependent on its orientation. The project concerned the inspection of J and V welds from a 5.56″ diameter carbon steel pipe with an 8.4mm wall thickness. The wall thickness is relatively thin compared to common inspection scopes. Therefore, the inspection set-up was adapted, and procedural changes were proposed. Consequently, additional validation efforts were required to demonstrate compliance with the required inspection standard; DNVGL-ST-F101: 2017. As part of this, welds were scanned with seeded indications and the reported locations were marked for macro slicing under witnessing of an independent representative from DNVGL. The resulting images from the indications in the welds showed great detail with respect to the position, orientation and height of the indications. A quantitative comparison with the results from the macro slices was performed, including a statistical analysis of the height sizing and depth positioning accuracies. From the analysis, it could be observed that the expected improvements with respect to the resolution and sizing accuracy were indeed achieved. Thereby, the procedure has proven to be adequate for the inspection of carbon steel girth welds within the thin wall thickness range (~6mm to ~15mm). The IWEX technology is a member of the upcoming inspection strategy based on imaging of ultrasonic FMC data. This strategy can be considered as the next step in the evolution of inspection strategies after phased array inspection. The IWEX technology has been witnessed and qualified by independent 3rd parties like DNVGL, this makes the IWEX technology unique in its kind and it opens opportunities for further acceptance in the industry and other inspection applications.


Author(s):  
Mark McDougall ◽  
Ken Williamson

Oil and gas production in Canada’s west has led to the need for a significant increase in pipeline capacity to reach export markets. Current proposals from major oil and gas transportation companies include numerous large diameter pipelines across the Rocky Mountains to port locations on the coast of British Columbia (BC), Canada. The large scale of these projects and the rugged terrain they cross lead to numerous challenges not typically faced with conventional cross-country pipelines across the plains. The logistics and access challenges faced by these mountain pipeline projects require significant pre-planning and assessment, to determine the timing, cost, regulatory and environmental impacts. The logistics of pipeline construction projects mainly encompasses the transportation of pipe and pipeline materials, construction equipment and supplies, and personnel from point of manufacture or point of supply to the right-of-way (ROW) or construction area. These logistics movement revolve around the available types of access routes and seasonal constraints. Pipeline contractors and logistics companies have vast experience in moving this type of large equipment, however regulatory constraints and environmental restrictions in some locations will lead to significant pre-planning, permitting and additional time and cost for material movement. In addition, seasonal constraints limit available transportation windows. The types of access vary greatly in mountain pipeline projects. In BC, the majority of off-highway roads and bridges were originally constructed for the forestry industry, which transports logs downhill whereas the pipeline industry transports large equipment and pipeline materials in both directions and specifically hauls pipe uphill. The capacity, current state and location of these off-highway roads must be assessed very early in the process to determine viability and/or potential options for construction access. Regulatory requirements, environmental restrictions, season of use restrictions and road design must all be considered when examining the use of or upgrade of existing access roads and bridges. These same restrictions are even more critical to the construction of new access roads and bridges. The logistics and access challenges facing the construction of large diameter mountain pipelines in Western Canada can be managed with proper and timely planning. The cost of the logistics and access required for construction of these proposed pipeline projects will typically be greater than for traditional pipelines, but the key constraint is the considerable time requirement to construct the required new access and pre-position the appropriate material to meet the construction schedule. The entire project team, including design engineers, construction and logistics planners, and material suppliers must be involved in the planning stages to ensure a cohesive strategy and schedule. This paper will present the typical challenges faced in access and logistics for large diameter mountain pipelines, and a process for developing a comprehensive plan for their execution.


2012 ◽  
Vol 192 ◽  
pp. 180-184 ◽  
Author(s):  
Ai Xia He ◽  
Rong Chang Li

Mechanical expanding process for large diameter line pipe, a detailed analysis of factors affecting the quality of the final products of the mechanical expansion and proposed optimization using orthogonal array optimization method, as an indicator of dimensional accuracy and shape accuracy of the products, combination of a variety of specifications of mechanical expanding products, the main process parameters to be optimized. Analysis and discussion of results, revealing the degree of influence of various factors on the quality of the final product, and gives the optimum combination of the results. Experiments show that the combination of optimized process parameters, and more help to improve the accuracy of the size and shape of products.


Sign in / Sign up

Export Citation Format

Share Document