Buckling Resistance of Large Diameter Spiral Welded Linepipe

Author(s):  
Tom Zimmerman ◽  
Chris Timms ◽  
Jueren Xie ◽  
James Asante

This paper contains the results of an experimental and analytical research program to determine the compressive buckling resistance of large-diameter, spiral-welded linepipe. Buckling resistance is important for pipe intended for service in Arctic, oil and gas pipeline systems, where pipes may be subjected to high bending strains caused by various ground movement events. The experimental work consisted of four full-scale tests of 30-inch (762 mm) diameter pipe subjected to various combinations of internal pressure, axial force and bending. The pipe specimens were fabricated using two material grades (X70 and X80) and two D/t ratios (82 and 48). Finite element analyses of the four tests were conducted to develop a better understanding of specimen behavior. The results suggest that spiral welded linepipe is as good as longitudinally welded line pipe in terms of buckling capacity. The spiral weld seam was in no way detrimental to the pipe performance.

Author(s):  
Jandark Oshana-Jajo ◽  
Hossein Ghaednia ◽  
Jamshid Zohreh Heydariha ◽  
Sreekanta Das

Steel pipelines used for transporting oil and gas can develop various damages such as mechanical damages, corrosion, wrinkle, and crack. One of the mechanical damages is a dent with or without other defects such as corrosion, gouge, and crack. The dent without other defect is often referred to as plain dent. Depending on the severity, a dent can lead to a failure of a field linepipe. The strain concentration in a dented pipeline wall can be used to determine the level of severity of a dent. Hence, a research program was undertaken at the Centre for Engineering Research in Pipelines (CERP) using full-scale tests and finite element analyses. The prime objective of this research was to determine comparative strain distributions in and around the dent and locations of high strains developed from the denting process. This information will help the pipeline operators to determine the severity of dents in their field linepipes. Hence, the outcome of this research will allow the pipeline operators to take an informed decision on whether or not an imminent remedial action for the dented segment of the line pipe is required. This paper presents test data and finite element simulation to discuss the locations and values of crucial strains in dents.


Author(s):  
Andy Young ◽  
Robert M. Andrews

Abstract Pipeline failures from circumferential cracking at girth welds continues to affect large diameter oil and gas transmission lines, even for modern lines constructed this century. The key factors that contribute to the failure at girth welds are the dimensions of defects present, the material properties of the pipe and weldments, and the presence of loading that drives crack growth. The mechanisms of failure are well understood, but identifying and measuring the contributing factors can be a challenge. Locating girth welds that are subject to elevated loads will enable operators to focus on sections with an increased threat of failure. In this paper, we consider each of the key factors, how these are identified and defined, and the uncertainties in the measurement process. Specific attention is applied to the presence and quantification of loads and how these influence the potential for failure. This includes sources of active external loading due to ground movement, for example, or loads generated in the pipeline from the construction process. Loads can also be quantified by measuring bending strain from inline inspection inertial measurement units. A more complete picture of pipeline loading can be established by integrating a structural analysis that accounts for the direction of pipeline movement and the presence of axial loads. The relationship between assessing pipeline integrity from ground movement — typically with strainbased methods — and establishing whether the defect can survive the load is explored. The relative contribution of bending and axial loads in the failure of defects is considered. The outcome of the study will assist pipeline operators in prioritising actions that enable the quantification of the all the key parameters. The resultant analysis will provide guidance on the girth welds that have an increased risk of failure and this will enable protective actions to be defined and scheduled accordingly.


Author(s):  
Josef Avagianos ◽  
Kostas Papamantellos

The world production capacity on large-diameter welded pipe amounts to more than 12 million tons per year 20–25% are produced as spiral sub-arc welded (SAW) pipes, with the balance of 75–80% being longitudinal SAW pipes (from plates). For most spiral-weld producers, a sizeable portion of line pipe is for water transportation, rather than hydrocarbon. In the past, the relative structural weakness of spiral-welded pipe, due to larger welded area, limited the growth of its use in the oil industry. With the development of more advanced production technology, the acceptance of spiral-welded pipes in the oil and gas industry has increased significantly. In this paper, the principals of the spiral manufacturing technology from coil by the two-step-method are introduced and the innovations of Corinth Pipework’s production facility are outlined in detail, including the sophisticated NDT techniques and the Quality Management System.


Metallurgist ◽  
1978 ◽  
Vol 22 (3) ◽  
pp. 185-188
Author(s):  
A. N. Fateev ◽  
V. K. Bol'bot ◽  
A. A. Chekmarev ◽  
A. P. Stipura ◽  
V. S. Zagorul'ko

2013 ◽  
Vol 753-755 ◽  
pp. 343-352
Author(s):  
Pin Yi Wang ◽  
Zong Yuan Mou

With the long-distance oil and gas pipelines are to development of the direction of large-diameter, high-pressure, high grade pipeline steel applications gradually become the trend of the development of the oil and gas pipeline construction. The welding process of the X100 line pipe which is about to industrial application is not yet to be determined. It is not clear that the affect to the weldability from the metallurgical composition, organization, performance, and other factors which would affect the site construction welding process and welding measures. In addition, it is not yet the discussion and analysis of the key technologies X100 line pipe-site welding process and defect types. In this paper, the X100 pipeline on-site application of welding technology research commenced work and studied the weldability and welding process of X100 which solve the field application of X100 pipeline steel pipe welding issues.


Author(s):  
M. J. Rosenfeld ◽  
James D. Hart ◽  
Nasir Zulfiqar ◽  
Richard W. Gailing

Field bends in large diameter pipe are routinely used in the construction of oil and gas pipelines. Mild ripples along the intrados are often unavoidable where such bends have a high D/t or high yield strength. Present regulations and industry standards differ in their treatment of mild ripples, consequently, the acceptance of such features has been heretofore inconsistent. A review of prior work on the subject was undertaken. Shell finite element analysis was then used to estimate the effect of ripple magnitude and spacing on stresses due to pressure and bending. Stress concentration effects were used with a suitable fatigue damage rule to estimate the effect of ripple parameters on service life. Results were benchmarked against the available test data.


1965 ◽  
Vol 87 (3) ◽  
pp. 265-278 ◽  
Author(s):  
G. M. McClure ◽  
A. R. Duffy ◽  
R. J. Eiber

The program of research on line pipe under the sponsorship of the A.G.A. Pipeline Research Committee is a comprehensive effort to investigate the important properties of pipe used in gas transmission. Several different phases are involved in this project, ranging from fundamental laboratory studies to fracture-behavior experiments on large-diameter pipe. This paper discusses the full-scale experimental parts of the program in which the fracture toughness of line pipe is being studied. Some of the factors that influence full-scale fracture behavior are discussed—material properties, fracture speed, temperature, wall thickness, nominal stress level, and type of backfill. Laboratory fracture tests that are being run and correlated with full-scale behavior are also described.


Sign in / Sign up

Export Citation Format

Share Document