Effect of limiting deviations of semifinished-product thickness on the bend angle of bent sections

Metallurgist ◽  
1985 ◽  
Vol 29 (5) ◽  
pp. 181-183
Author(s):  
I. S. Trishevskii ◽  
V. A. Ena
2019 ◽  
Vol 14 (3) ◽  
Author(s):  
Saravanan S ◽  
Murugan G

This study addresses the effect of process parameters viz., loading ratio (mass of explosive/mass of flyer plate) and preset angle on dynamic bend angle, collision velocity and flyer plate velocity in dissimilar explosive cladding. In addition, the variation in interfacial microstructure and mechanical strength of aluminium 5052-stainless steel 304 explosive clads is reported. The interface exhibits a characteristic undulating interface with a continuous molten layer formation. The interfacial amplitude increases with the loading ratio and preset angle. Maximum hardness is observed at regions closer to the interface


Metallurgist ◽  
1965 ◽  
Vol 9 (3) ◽  
pp. 139-141
Author(s):  
V. S. Galyan ◽  
M. A. Yartsev ◽  
R. M. Khairutdinov ◽  
E. S. Golikov ◽  
S. T. Ushakov ◽  
...  

Author(s):  
Manish Kumar ◽  
Pronab Roy ◽  
Kallol Khan

From the recent literature, it is revealed that pipe bend geometry deviates from the circular cross-section due to pipe bending process for any bend angle, and this deviation in the cross-section is defined as the initial geometric imperfection. This paper focuses on the determination of collapse moment of different angled pipe bends incorporated with initial geometric imperfection subjected to in-plane closing and opening bending moments. The three-dimensional finite element analysis is accounted for geometric as well as material nonlinearities. Python scripting is implemented for modeling the pipe bends with initial geometry imperfection. The twice-elastic-slope method is adopted to determine the collapse moments. From the results, it is observed that initial imperfection has significant impact on the collapse moment of pipe bends. It can be concluded that the effect of initial imperfection decreases with the decrease in bend angle from 150∘ to 45∘. Based on the finite element results, a simple collapse moment equation is proposed to predict the collapse moment for more accurate cross-section of the different angled pipe bends.


2007 ◽  
Vol 49 (12) ◽  
pp. 1413-1424 ◽  
Author(s):  
Yun-Jae Kim ◽  
Kuk-Hee Lee ◽  
Chang-Sik Oh ◽  
Bong Yoo ◽  
Chi-Yong Park

1991 ◽  
Vol 156 (1) ◽  
pp. 63-80 ◽  
Author(s):  
C. Shingyoji ◽  
I. R. Gibbons ◽  
A. Murakami ◽  
K. Takahashi

The heads of live spermatozoa of the sea urchin Hemicentrotus pulcherrimus were held by suction in the tip of a micropipette mounted on a piezoelectric device and vibrated either laterally or axially with respect to the head axis. Within certain ranges of frequency and amplitude, lateral vibration of the pipette brought about a stable rhythmic beating of the flagella in the plane of vibration, with the beat frequency synchronized to the frequency of vibration [Gibbons et al. (1987), Nature 325, 351–352]. The sperm flagella, with an average natural beat frequency of 48 Hz, showed stable beating synchronized to the pipette vibration over a range of 35–90 Hz when the amplitude of vibration was about 20 microns or greater. Vibration frequencies below this range caused instability of the beat plane, often associated with irregularities in beat frequency. Frequencies above about 90 Hz caused irregular asymmetrical flagellar beating with a marked decrease in amplitude of the propagated bends and a skewing of the flagellar axis towards one side; the flagella often stopped in a cane shape. In flagella that were beating stably under imposed vibration, the wavelength was reduced at higher frequencies and increased at lower frequencies. When the beat frequency was equal to or lower than the natural beat frequency, the apparent time-averaged sliding velocity of axonemal microtubules, obtained as twice the product of frequency and bend angle, decreased with beat frequency in both the proximal and distal regions of the flagella. However, at vibration frequencies above the natural beat frequency, the sliding velocity increased with frequency only in the proximal region of the flagellum and remained essentially unchanged in more distal regions. This apparent limit to the velocity of sliding in the distal region may represent an inherent limit in the intrinsic velocity of active sliding, while the faster sliding observed in the proximal region may be a result of passive sliding or elastic distortion of the microtubules induced by the additional energy supplied by the vibrating pipette. Axial vibration with frequencies either close to or twice the natural beat frequency induced cyclic changes in the waveform, compressing and expanding the bends in the proximal region, but did not affect bends in the distal region or alter the beat frequency.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Silambarasan R. ◽  
Veerappan A.R. ◽  
Shanmugam S.

Purpose The purpose of this study is to investigate the effect of structural deformations and bend angle on plastic collapse load of pipe bends under an in-plane closing bending moment (IPCM). A large strain formulation of three-dimensional non-linear finite element analysis was performed using an elastic perfectly plastic material. A unified mathematical solution was proposed to estimate the collapse load of pipe bends subjected to IPCM for the considered range of bend characteristics. Design/methodology/approach ABAQUS was used to create one half of the pipe bend model due to its symmetry on the longitudinal axis. Structural deformations, i.e. ovality (Co) and thinning (Ct) varied from 0% to 20% in 5% steps while the bend angle (ø) varied from 30° to 180° in steps of 30°. Findings The plastic collapse load decreases as the bend angle increase for all pipe bend models. A remarkable effect on the collapse load was observed for bend angles between 30° and 120° beyond which a decline was noticed. Ovality had a significant effect on the collapse load with this effect decreasing as the bend angle increased. The combined effect of thinning and bend angle was minimal for the considered models and the maximum per cent variation in collapse load was 5.76% for small bend angles and bend radius pipe bends and less than 2% for other cases. Originality/value The effect of structural deformations and bend angle on collapse load of pipe bends exposed to IPCM has been not studied in the existing literature.


1977 ◽  
Vol 73 (1) ◽  
pp. 182-192 ◽  
Author(s):  
K Ogawa ◽  
D J Asai ◽  
C J Brokaw

Effects of an antiserum against native dynein 1 from sperm flagella of the sea urchin Strongylocentrotus purpuratus were compared with effects of an antiserum previously obtained against an ATPase-active tryptic fragment (fragment 1A) of dynein 1 from sperm flagella of the sea urchin, Anthocidaris crassispina. Both antisera precipitate dynein 1 and do not precipitate dynein 2. Only the fragment 1A antiserum precipitates fragment 1A and produces a measurable inhibition of dynein 1 ATPase activity. Both antisera inhibit the movement and the movement-coupled ATP dephosphorylation of reactivated spermatozoa. The inhibition of movement by the antiserum against dynein 1 is much less than by the antiserum against fragment 1A, suggesting that a specific interference with the active ATPase site may be required for effective inhibition of movement. Both antisera reduce the bend angle as well as the beat frequency of reactivated S. purpuratus spermatozoa, suggesting that the bend angle may depend on the activity of the dynein arms which generate active sliding.


2009 ◽  
Vol 4 (1) ◽  
Author(s):  
Elham Ameri ◽  
M Nasr Esfahany

The effect of the bend angle on the unsteady developing turbulent air flow through oscillating circular-sectioned curved pipes with the various angles of 180°, 135° and 90° was investigated numerically. The bends had a diameter of 106 mm and a curvature radius ratio of 6.0 with long, straight upstream and downstream sections. Results of the mean velocity and static pressure were obtained at a Reynolds number of 31200 and at various longitudinal stations. The velocity of the primary flow was illustrated in the form of contour map and vector diagram. From the inlet plane of the three oscillating bends to the angle of 45°, the velocity fields in 180°, 90° and 135° bends are similar. The high velocity regions, however, occur near the upper and lower parts in 90° and 180° bends, respectively.


Author(s):  
Diana Abdulhameed ◽  
Michael Martens ◽  
J. J. Roger Cheng ◽  
Samer Adeeb

Pipe bends are frequently used to change the direction in pipeline systems and they are considered one of the critical components as well. Bending moments acting on the pipe bends result from the surrounding environment, such as thermal expansions, soil deformations, and external loads. As a result of these bending moments, the initially circular cross-section of the pipe bend deforms into an oval shape. This consequently changes the pipe bend’s flexibility leading to higher stresses compared to straight pipes. Past studies considered the case of a closing in-plane bending moment on 90-degree pipe bends and proposed factors that account for the increased flexibility and high-stress levels. These factors are currently presented in the design codes and known as the flexibility and stress intensification factors (SIF). This paper covers the behaviour of an initially circular cross-sectional smooth pipe bend of uniform thickness subjected to in-plane opening/closing bending moment. ABAQUS FEA software is used in this study to model pipe bends with different nominal pipe sizes, bend angles, and various bend radius to cross-sectional pipe radius ratios. A comparison between the CSA-Z662 code and the FEA results is conducted to investigate the applicability of the currently used SIF factor presented in the design code for different loading cases. The study showed that the in-plane bending moment direction acting on the pipe has a significant effect on the stress distribution and the flexibility of the pipe bend. The variation of bend angle and bend radius showed that it affects the maximum stress drastically and should be considered as a parameter in the flexibility and SIF factors. Moreover, the CSA results are found to be un-conservative in some cases depending on the bend angle and direction of the applied bending moment.


Sign in / Sign up

Export Citation Format

Share Document