Liver nonspecific oxidase activity and biological effects of the antitumor antibiotic adriamycin

1981 ◽  
Vol 92 (4) ◽  
pp. 1392-1395
Author(s):  
T. A. Bogush ◽  
A. B. Syrkin ◽  
F. V. Donenko
1957 ◽  
Vol 188 (3) ◽  
pp. 547-549 ◽  
Author(s):  
Attilio Canzanelli ◽  
Rhea Sossen ◽  
David Rapport

Five per cent suspensions of rat liver mitochondria were irradiated with ultraviolet light for varying periods of time and the succinoxidase and cytochrome oxidase activity were determined. Both succinoxidase and cytochrome oxidase activity were reduced by irradiation with ultraviolet. The order of magnitude of the ultraviolet energy necessary to produce such changes is much less than that necessary to produce chemical changes in nucleic acid derivatives, and approaches the amount which has been shown to produce lethal and other biological effects.


2014 ◽  
Vol 22 (1) ◽  
pp. 5-19 ◽  
Author(s):  
Marian Saniewski ◽  
Marcin Horbowicz ◽  
Sirichai Kanlayanarat

AbstractChemical compounds containing the tropone structure (2,4,6-cycloheptatrien-1-one), in their molecule, called troponoids, characterized by a seven-membered ring, are distributed in some plants, bacteria and fungi, although they are relatively rare. ß-Thujaplicin (2-hydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one), also known as hinokitiol, is a natural compound found in several plants of the Cupressaceae family. Besides hinokitiol, related compounds were identified in Cupressaceae trees. It has been demonstrated that hinokitiol and its derivatives have various biological effects, such as antibacterial, antifungal, insecticidal, antimalarial, antitumor, anti-ischemic, iron chelating and the inhibitory activity against polyphenol oxidase activity. Activity similar to ß-thujaplicin has tropolone and its derivatives, which are not present nature. Due to the high scientific and practical interest, synthetic ß-thujaplicin and other troponoids have been produced for many years. In this review, the major biological effects of troponoids, mostly ß-thujaplicin and tropolone, on tyrosinase and polyphenol oxidase activity, ethylene production, antibacterial, antifungal and insecticidal activities, and biotransformation of ß-thujaplicin by cultured plant cells are presented. Accumulation of ß-thujaplicin and related troponoids has been shown in cell cultures of Cupressus lusitanica and other species of Cupressaceae. The biosynthetic pathway of the troponoids in plants, bacteria and fungi has been also briefly described.


Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


Author(s):  
W. Allen Shannon ◽  
Hannah L. Wasserkrug ◽  
andArnold M. Seligman

The synthesis of a new substrate, p-N,N-dimethylamino-β-phenethylamine (DAPA)3 (Fig. 1) (1,2), and the testing of it as a possible substrate for tissue amine oxidase activity have resulted in the ultracytochemical localization of enzyme oxidase activity referred to as DAPA oxidase (DAPAO). DAPA was designed with the goal of providing an amine that would yield on oxidation a stronger reducing aldehyde than does tryptamine in the histochemical demonstration of monoamine oxidase (MAO) with tetrazolium salts.Ultracytochemical preparations of guinea pig heart, liver and kidney and rat heart and liver were studied. Guinea pig kidney, known to exhibit high levels of MAO, appeared the most reactive of the tissues studied. DAPAO reaction product appears primarily in mitochondrial outer compartments and cristae (Figs. 2-4). Reaction product is also localized in endoplasmic reticulum, cytoplasmic vacuoles and nuclear envelopes (Figs. 2 and 3) and in the sarcoplasmic reticulum of heart.


2002 ◽  
Vol 69 ◽  
pp. 59-72 ◽  
Author(s):  
Kurt Drickamer ◽  
Andrew J. Fadden

Many biological effects of complex carbohydrates are mediated by lectins that contain discrete carbohydrate-recognition domains. At least seven structurally distinct families of carbohydrate-recognition domains are found in lectins that are involved in intracellular trafficking, cell adhesion, cell–cell signalling, glycoprotein turnover and innate immunity. Genome-wide analysis of potential carbohydrate-binding domains is now possible. Two classes of intracellular lectins involved in glycoprotein trafficking are present in yeast, model invertebrates and vertebrates, and two other classes are present in vertebrates only. At the cell surface, calcium-dependent (C-type) lectins and galectins are found in model invertebrates and vertebrates, but not in yeast; immunoglobulin superfamily (I-type) lectins are only found in vertebrates. The evolutionary appearance of different classes of sugar-binding protein modules parallels a development towards more complex oligosaccharides that provide increased opportunities for specific recognition phenomena. An overall picture of the lectins present in humans can now be proposed. Based on our knowledge of the structures of several of the C-type carbohydrate-recognition domains, it is possible to suggest ligand-binding activity that may be associated with novel C-type lectin-like domains identified in a systematic screen of the human genome. Further analysis of the sequences of proteins containing these domains can be used as a basis for proposing potential biological functions.


1982 ◽  
Vol 48 (03) ◽  
pp. 277-282 ◽  
Author(s):  
I Nathan ◽  
A Dvilansky ◽  
T Yirmiyahu ◽  
M Aharon ◽  
A Livne

SummaryEchis colorata bites cause impairment of platelet aggregation and hemostatic disorders. The mechanism by which the snake venom inhibits platelet aggregation was studied. Upon fractionation, aggregation impairment activity and L-amino acid oxidase activity were similarly separated from the crude venom, unlike other venom enzymes. Preparations of L-amino acid oxidase from E.colorata and from Crotalus adamanteus replaced effectively the crude E.colorata venom in impairment of platelet aggregation. Furthermore, different treatments known to inhibit L-amino acid oxidase reduced in parallel the oxidase activity and the impairment potency of both the venom and the enzyme preparation. H2O2 mimicked characteristically the impairment effects of L-amino acid oxidase and the venom. Catalase completely abolished the impairment effects of the enzyme and the venom. It is concluded that hydrogen peroxide formed by the venom L-amino acid oxidase plays a role in affecting platelet aggregation and thus could contribute to the extended bleeding typical to persons bitten by E.colorata.


Sign in / Sign up

Export Citation Format

Share Document