Intravital determination of pH gradient between cytoplasm and lysosomes in human fibroblasts from normal subjects and patients with lysosomal storage diseases

1991 ◽  
Vol 111 (5) ◽  
pp. 640-643
Author(s):  
T. S. Ivleva ◽  
T. A. Ogloblina ◽  
L. L. Litinskaya ◽  
Yu. R. Khrust ◽  
G. Ya. Vidershain
eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Abigail G Garrity ◽  
Wuyang Wang ◽  
Crystal MD Collier ◽  
Sara A Levey ◽  
Qiong Gao ◽  
...  

Impaired homeostasis of lysosomal Ca2+ causes lysosome dysfunction and lysosomal storage diseases (LSDs), but the mechanisms by which lysosomes acquire and refill Ca2+ are not known. We developed a physiological assay to monitor lysosomal Ca2+ store refilling using specific activators of lysosomal Ca2+ channels to repeatedly induce lysosomal Ca2+ release. In contrast to the prevailing view that lysosomal acidification drives Ca2+ into the lysosome, inhibiting the V-ATPase H+ pump did not prevent Ca2+ refilling. Instead, pharmacological depletion or chelation of Endoplasmic Reticulum (ER) Ca2+ prevented lysosomal Ca2+ stores from refilling. More specifically, antagonists of ER IP3 receptors (IP3Rs) rapidly and completely blocked Ca2+ refilling of lysosomes, but not in cells lacking IP3Rs. Furthermore, reducing ER Ca2+ or blocking IP3Rs caused a dramatic LSD-like lysosome storage phenotype. By closely apposing each other, the ER may serve as a direct and primary source of Ca2+for the lysosome.


Author(s):  
Carole Vogler ◽  
Harvey S. Rosenberg

Diagnostic procedures for evaluation of patients with lysosomal storage diseases (LSD) seek to identify a deficiency of a responsible lysosomal enzyme or accumulation of a substance that requires the missing enzyme for degradation. Most patients with LSD have progressive neurological degeneration and may have a variety of musculoskeletal and visceral abnormalities. In the LSD, the abnormally diminished lysosomal enzyme results in accumulation of unmetabolized catabolites in distended lysosomes. Because of the subcellular morphology and size of lysosomes, electron microscopy is an ideal tool to study tissue from patients with suspected LSD. In patients with LSD all cells lack the specific lysosomal enzyme but the distribution of storage material is dependent on the extent of catabolism of the substrate in each cell type under normal circumstances. Lysosmal storages diseases affect many cell types and tissues. Storage material though does not accumulate in all tissues and cell types and may be different biochemically and morphologically in different tissues.Conjunctiva, skin, rectal mucosa and peripheral blood leukocytes may show ultrastructural evidence of lysosomal storage even in the absence of clinical findings and thus any of these tissues can be used for ultrastructural examination in the diagnostic evaluation of patients with suspected LSD. Biopsy of skin and conjunctiva are easily obtained and provide multiple cell types including endothelium, epithelium, fibroblasts and nerves for ultrastructural study. Fibroblasts from skin and conjunctiva can also be utilized for the initiation of tissue cultures for chemical assays. Brain biopsy has been largely replaced by biopsy of more readily obtained tissue and by biochemical assays. Such assays though may give equivical or nondiagnostic results and in some lysosomal storage diseases an enzyme defect has not yet been identified and diagnoses can be made only by ultrastructural examination.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Muna Abed Rabbo ◽  
Yara Khodour ◽  
Laurie S. Kaguni ◽  
Johnny Stiban

AbstractJohann Ludwig Wilhelm Thudicum described sphingolipids (SLs) in the late nineteenth century, but it was only in the past fifty years that SL research surged in importance and applicability. Currently, sphingolipids and their metabolism are hotly debated topics in various biochemical fields. Similar to other macromolecular reactions, SL metabolism has important implications in health and disease in most cells. A plethora of SL-related genetic ailments has been described. Defects in SL catabolism can cause the accumulation of SLs, leading to many types of lysosomal storage diseases (LSDs) collectively called sphingolipidoses. These diseases mainly impact the neuronal and immune systems, but other systems can be affected as well. This review aims to present a comprehensive, up-to-date picture of the rapidly growing field of sphingolipid LSDs, their etiology, pathology, and potential therapeutic strategies. We first describe LSDs biochemically and briefly discuss their catabolism, followed by general aspects of the major diseases such as Gaucher, Krabbe, Fabry, and Farber among others. We conclude with an overview of the available and potential future therapies for many of the diseases. We strive to present the most important and recent findings from basic research and clinical applications, and to provide a valuable source for understanding these disorders.


2001 ◽  
Vol 27 (2) ◽  
pp. 173-181 ◽  
Author(s):  
R Guy ◽  
J M Forsyth ◽  
A Cooper ◽  
R E Morton

Pathology ◽  
1980 ◽  
Vol 12 (1) ◽  
pp. 139
Author(s):  
W.F. Carey ◽  
P.V. Nelson ◽  
A.C. Pollard

Sign in / Sign up

Export Citation Format

Share Document