Estimates of water vapor flux and canopy conductance of Scots pine at the tree level utilizing different xylem sap flow methods

1996 ◽  
Vol 53 (1-3) ◽  
pp. 105-113 ◽  
Author(s):  
B. K�stner ◽  
P. Biron ◽  
R. Siegwolf ◽  
A. Granier

1996 ◽  
Vol 53 (1-3) ◽  
pp. 115-122 ◽  
Author(s):  
A. Granier ◽  
P. Biron ◽  
B. K�stner ◽  
L. W. Gay ◽  
G. Najjar


2003 ◽  
Vol 30 (6) ◽  
pp. 689 ◽  
Author(s):  
Ping Lu ◽  
Isa A. M. Yunusa ◽  
Rob R. Walker ◽  
Warren J. Müller

Whole-vine transpiration was estimated for well-watered nine-year-old Sultana grapevines (Vitis vinifera L. cv. Sultana) from xylem sap flow measured with Granier's heat-dissipation probes. Canopy conductance of the grapevine was calculated by inverting the Penman–Monteith equation. Transpiration from grapevine canopies was strongly controlled by the canopy conductance. Canopy conductance decreased exponentially with increasing vapour pressure deficit (VPD) except in the morning when solar radiation was less than 200 W m–2 and the canopy conductance was predominantly limited by the solar radiation. A non-linear model of canopy conductance as a function of the solar radiation and VPD explained > 90% of the variation observed in canopy conductance. Under contrasting VPD conditions (daytime maximum of 3 kPa vs 8 kPa), grapevines were able to regulate their canopy conductance from 0.006 to 0.001 m s–1 to maintain a near constant transpiration. Whole-canopy transpiration calculated from modelled canopy conductance using the Penman–Monteith equation was highly correlated with the measured transpiration (sap flow) values over the range of 0–0.20 mm h–1 (R2 > 0.85). Cross-validation shows that these mechanistic models based on solar radiation and VPD provide good predictions of canopy conductance and transpiration under the conditions of the study.



Oecologia ◽  
1992 ◽  
Vol 91 (3) ◽  
pp. 350-359 ◽  
Author(s):  
B. M. M. Köstner ◽  
E. -D. Schulze ◽  
F. M. Kelliher ◽  
D. Y. Hollinger ◽  
J. N. Byers ◽  
...  


2011 ◽  
Vol 284 (5) ◽  
pp. 1295-1298 ◽  
Author(s):  
Luca Fiorani ◽  
Francesco Colao ◽  
Antonio Palucci ◽  
Davod Poreh ◽  
Alessandro Aiuppa ◽  
...  




2021 ◽  
Author(s):  
Hongmei Ren ◽  
Ang Li ◽  
Pinhua Xie ◽  
Zhaokun Hu ◽  
Jin Xu ◽  
...  

<p>      Water vapor transport affects regional precipitation and climate change. The measurement of precipitable water and water vapor flux is of great significance to the study of precipitation and water vapor transport. In the study, a new method of computing the precipitable water and estimating the water vapor transport flux using multi-axis differential optical absorption spectroscopy (MAX-DOAS) were presented. The calculated precipitable water and water vapor flux were compared to the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data and the correlation coefficient of the precipitable water, the zonal and meridional water vapor flux and ECMWF are r≥0.92, r=0.77 and r≥0.89, respectively. The seasonal and diurnal climatologies of precipitable water and water vapor flux in the coastal (Qingdao) and inland (Xi’an) cities of China using this method were analyzed from June 1, 2019 to May 31, 2020. The results indicated that the seasonal and diurnal variation characteristics of the precipitable water in the two cities were similar. The zonal fluxes of the two cities were mainly transported from west to east, Qingdao's meridional flux was mainly transported to the south, and Xi'an was mainly transported to the north. The results also indicated that the water vapor flux transmitting belts appear near 2km and 1.4km above the surface in Qingdao and appeared around 2.8km, 1.6km and 1.0km in Xi'an. </p>



Proceedings ◽  
2019 ◽  
Vol 2 (13) ◽  
pp. 824
Author(s):  
Yuki Hara ◽  
Naoki Hara ◽  
Hiroki Ishizuka ◽  
Kyohei Terao ◽  
Hidekuni Takao ◽  
...  

In this study, we focused on direct and quantitative monitoring of sap dynamics in plant stems, and proposed the microscale xylem sap flow sensor. This sensor facilitates the simultaneous measurement of flow velocity and direction by combining the principles of a Granier sensor and a thermal flow sensor. We fabricated micro-sensor chips for functional verification by using MEMS technology, and assembled them on a resin film to facilitate mounting on the epidermis of plants. Furthermore, we measured the sap dynamics by using an experimental setup, and succeeded in measuring the flow velocity and direction at the same time.



Sign in / Sign up

Export Citation Format

Share Document